Volcanes - Instituto Geofísico - EPN

Volcanes (292)

Los volcanes activos son observados a través de diversas tecnologías.

Actualización de la actividad superficial

Informe Especial Volcán El Reventador N° 2024-001
Fotografía de una explosión típica del volcán tomada el 9 de mayo de 2024 (Fotografía: S. Hidalgo – IGEPN).


Resumen
Desde el 21 de marzo de 2024, gracias a la red sísmica regional se detectó un incremento en el número y en la amplitud de las explosiones registradas en el volcán El Reventador. Este incremento ha venido acompañado de un leve aumento en la desgasificación de SO2 medida por los instrumentos satelitales. Sin embargo, las características de las emisiones de ceniza no han sufrido cambios y se mantienen en los niveles habituales del volcán. Por otro lado, varios cambios morfológicos se han producido en la zona del cráter, mismos que facilitan la generación de pequeños flujos piroclásticos hacia los flancos sur y suroriental del cono volcánico. Es importante destacar que hasta el momento estos flujos han sido pequeños y no generaron ningún impacto en zonas pobladas o infraestructuras de las cercanías al volcán. Los depósitos generados por esta actividad son fácilmente removilizables por lluvia y por tanto es importante mantener vigilancia en los drenajes que descienden por el flanco sur del volcán ya que podrían generarse lahares medianos a pequeños.

Al momento de la emisión del presente documento, el volcán mantiene sus niveles de actividad superficial alta sin cambio, e interna moderada sin cambio.

Cómo citar/how to cite: IGEPN (2024) – Informe Volcánico Especial – El Reventador – N° 2024-001.


Antecedentes
El volcán El Reventador de 3 570 metros de altura y localizado en la zona subandina, es uno de los volcanes más activos del Ecuador. Es un estratocono localizado al interior de una cicatriz de deslizamiento con forma de U abierta hacia el oriente. Luego de 26 años de reposo, el 3 de noviembre de 2002, el volcán El Reventador entró en erupción. Esta erupción fue una de las más grandes y explosivas registradas en el Ecuador durante los últimos 150 años. La columna de ceniza alcanzó 17 km de altura sobre el nivel de cráter, y las nubes ardientes (flujos o corrientes piroclásticas) sepultaron la vía principal del Chaco – Lago Agrio, así como una de las tuberías de petróleo existentes a esa época. La caída de ceniza fue a escala regional. En Quito, los efectos de la ceniza proveniente del volcán provocaron el cierre del Aeropuerto Internacional Mariscal Sucre, que en esos años estaba en el actual Parque Bicentenario, y la suspensión de actividades económicas, administrativas y educativas; provocando impactos significativos a la dinámica productiva del Ecuador. El Índice de Explosividad Volcánica (IEV) correspondiente a este evento fue de “4”, equivalente a “cataclísmica” (Hall et al., 2004).

Desde entonces, este volcán se ha caracterizado por presentar una variabilidad en su estilo eruptivo, cambiando constantemente la morfología de su cráter y generando decenas de explosiones diarias, flujos de lava, flujos piroclásticos, y columnas de ceniza que alcanzan algunos cientos de metros hasta pocos kilómetros sobre la cumbre del volcán, así como ocasionales flujos de lodo o lahares (Almeida et al., 2018; Hidalgo et al., 2023; Vallejo et al., 2024). El volcán ha mantenido sus niveles de actividad internos y superficiales entre moderados y altos (https://www.igepn.edu.ec/servicios/busqueda-informes: IGEPN, 2024. Informe anual de la actividad del volcán El Reventador - 2023, Quito, Ecuador).

 

Anexo técnico-científico

Sismicidad
En general, la actividad sísmica de El Reventador está dominada por frecuentes explosiones que se producen en el volcán, identificadas utilizando una combinación de sismómetros de campo cercano (<10 km de la cumbre) y regionales (>40 km de la cumbre). En el caso de este informe, en el beneficio de la homogeneidad del catálogo y para facilitar una mejor comparación de la sismicidad más reciente en relación con la actividad pasada, se utilizan los datos de los sismómetros regionales. A partir del 21 de marzo de 2024, se ha observado un claro aumento de los registros sísmicos correspondientes a las explosiones del volcán (Fig. 1). El número diario de explosiones aumentó gradualmente hasta alcanzar un primer pico el 26 de mayo de este año y un máximo el 9 de junio. También se observa que la amplitud (y por tanto la energía) de las explosiones aumenta en las semanas posteriores al aumento del 21 de marzo. Este aumento de amplitud no es mayor que el registrado en anteriores repuntes de actividad en Reventador. En conclusión, los datos sísmicos disponibles sugieren un aumento gradual del número diario de explosiones en relación con los periodos de actividad de base en este volcán, pero no en relación con los periodos de mayor actividad.

Informe Especial Volcán El Reventador N° 2024-001
Figura 1. Amplitudes (arriba) y tasa diaria (abajo) de las explosiones del Reventador en función del tiempo desde enero de 2023 hasta el 10 de junio de 2024. Se observa un cambio en la tasa diaria de explosiones aproximadamente el 21 de marzo, con un aumento gradual de la tasa hasta alcanzar un máximo el 9 de junio.


Deformación
El análisis de las imágenes SAR de Sentinel-1 en órbita descendente, desde el 01 de enero de 2023 al 31 de mayo de 2024, muestra zonas con una buena correlación, especialmente para la parte media y baja del edificio volcánico, hacia el flanco occidental (sobre el borde de la cicatriz de deslizamiento), y hacia la partes sur y oriental.

Los mapas de velocidades y de desplazamiento acumulado (Fig. 2) muestran valores negativos en la parte más cercana a la zona alta del cono (colores verdosos y azules), mientras que hacia el occidente se observan valores positivos o tendencia inflacionaria (colores ocres y amarillos).

Informe Especial Volcán El Reventador N° 2024-001
Figura 2. Mapas de velocidades (izquierda) y desplazamientos (central) en el volcán El Reventador, procesado con el método LicSAR (Lazecký et al., 2020) y LiCSBAS (Morishita et al, 2020), entre el 01 de enero de 2023 al 31 de mayo de 2024. Puntos de control (derecha) Procesamiento por: P. Espín. Universidad Leeds.


En la Figura 2, en el mapa de la derecha, se ubican los cuatro puntos de control que se utilizan para obtener las líneas de tiempo de la Figura 3, en la cual se representa el desplazamiento de los puntos observado desde enero de 2023. En los puntos de control N (línea verde), E (línea azul) y W (línea roja), se observa una tendencia ligeramente ascendente desde mayo 2023 y especialmente desde octubre de 2023. Esta tendencia se revierte luego de alcanzar un pico en marzo 2024. Al contrario, para el punto de control al S (línea fucsia), se observa una clara tendencia descendente hasta abril de 2024, cuando la tendencia se vuelve levemente positiva y se mantiene hasta la fecha.

Informe Especial Volcán El Reventador N° 2024-001
Figura 3. Serie temporal, desde enero 2023 hasta junio 2024, de los puntos de control relacionados con la distancia entre su superficie y la Línea de Vista del Satélite (LOS). Procesamiento por: P. Espín. Universidad de Leeds.


Actividad Superficial
La actividad superficial actual del volcán se caracteriza por presentar explosiones cuyas columnas de ceniza llegan hasta 1 km o excepcionalmente hasta 2 km de altura sobre el nivel cráter. El número de explosiones que el volcán registra actualmente es de entre 50 y 70 por día. De estas explosiones, eventualmente se han generado flujos piroclásticos (también conocidos como “nubes ardientes”). Estos eventos han provocado cambios en la morfología del edificio volcánico, que se describen a continuación y se identificaron gracias a las cámaras permanentes instaladas en el volcán.


Emisiones de ceniza
La actividad superficial actual en el volcán El Reventador se caracteriza por emisiones de ceniza puntuales pequeñas de corto a mediano alcance. Entre el 1 de junio 2023 y el 6 de junio 2024, el Centro de Avisos de Cenizas Volcánicas de Washington (W-VAAC por sus siglas en inglés) publicó 584 reportes de nubes de ceniza observadas en El Reventador, con un promedio de dos reportes al día (Fig. 4). El panel superior derecho de la Figura 4 indica que las alturas de estas emisiones se han mantenido entre los 400 y los 2800 metros sobre el nivel del cráter, con una media de 1000 metros. Durante este periodo solamente en 11 días se registraron plumas de ceniza con alturas mayores al umbral de 1600 metros sobre el cráter, utilizado para diferenciar la actividad de base del volcán de otras actividades más elevadas (línea roja entrecortada en Figura 4). Con respecto al alcance de las emisiones, en promedio, las nubes de ceniza alcanzaron una distancia de 30 kilómetros desde el volcán y los mayores alcances se registraron en junio, agosto y septiembre de 2023 y enero y junio de 2024 (panel inferior izquierdo Figura 4). La velocidad promedio con la que se dispersaron estas emisiones de ceniza fue de 5 m/s (panel inferior derecho Figura 4) y en su mayoría se dirigieron hacia el occidente y noroccidente. En general, las características de las emisiones de ceniza se han mantenido estables desde junio de 2023, sin sobrepasar los umbrales considerados como límites de la actividad de base de El Reventador.

Informe Especial Volcán El Reventador N° 2024-001
Figura 4. Número de alertas diarias W-VAAC (azul), altura máxima diaria en metros sobre el nivel del cráter (gris), alcance máximo diario en kilómetros (verde), y velocidad máxima diaria (rojo) para emisiones de ceniza del volcán El Reventador entre junio 2023 y junio 2024 con la media móvil respectiva de 7 días (línea continua). La línea discontinua roja indica el umbral establecido para diferenciar la actividad de base del volcán de actividad más elevada.


Cámara permanente de rango visible LAVCAM
La cámara de rango visible LAVCAM se encuentra ubicada a 2.7 km al suroriente del cono volcánico. Esta cámara toma imágenes de la actividad superficial del volcán de manera continua con una frecuencia de 5 minutos.

Desde el 2 de mayo se comenzó a observar pequeños depósitos de flujos piroclásticos en el flanco suroriental del volcán (Fig. 5a), y posteriormente las buenas condiciones climáticas permitieron observar los flujos responsables de estos depósitos (Fig. 5b). Este fenómeno se volvió común y se pudo observar varios días después, desde el 5 de mayo (Fig. 5c) hasta la fecha de emisión de este informe (Fig. 5d). El alcance de estos flujos es variable y va desde los 0.5 km hasta 1.2 km sobre el flanco suroriental del volcán.

Informe Especial Volcán El Reventador N° 2024-001
Figura 5. a) Depósito de flujo piroclástico observado el 5 de mayo a las 06h37 am TL. b, c y d) Flujos piroclásticos o nubes ardientes que descienden por los flancos sur y suroriental del volcán (Elaborado por: M. Almeida – IGEPN).


El 01 de junio (Fig. 6a) se pudo observar el volcán con pequeños depósitos de flujos piroclásticos de color blanco con su correspondiente zona de deposición. La actividad explosiva de la noche del 2 al 3 de junio dejó a la vista una pequeña quebrada que nace en el borde sur-suroriental del cráter, además de una depresión al interior de este (Fig. 6b). Los nuevos flujos piroclásticos generados se encausan en esta quebrada, facilitando su transporte hacia la base del volcán, tal como se observa en la Figura 6c. Asociado a estos cambios, las cámaras de rango visible han detectado una zona con incandescencia casi permanente en la zona sur oriental del cráter del volcán desde el 12 de mayo. Sin embargo, la intensidad de la anomalía detectada el 12 de mayo (Fig. 6c), es menor a la anomalía resultante de la actividad del 02 de junio, evidenciada por las cámaras el 04 de junio (Fig. 6d).

Informe Especial Volcán El Reventador N° 2024-001
Figura 6. a) Fotografía del volcán El Reventador el 01 de junio de 2024. b) Fotografía del volcán el día 03 de junio de 2024 en donde se observa la nueva quebrada del flanco suroriente del volcán. c) Anomalía termal observada por la cámara de rango visible el 12 de mayo. d) Anomalía termal observada por la cámara de rango visible el 04 de junio luego de la actividad que formó la quebrada suroriental (Elaborado por: M. Almeida – IGEPN).


Termografía
Entre el 08 y 10 de mayo un equipo técnico del Instituto Geofísico realizó mediciones de temperatura con una cámara térmica portátil (FLIR T1020). Gracias a este instrumento se pudo registrar varios eventos explosivos, de los cuales, algunos generaron flujos piroclásticos.

En la Figura 7 se puede observar la variación de las temperaturas máximas aparentes (TMA) y las imágenes asociadas a uno de los eventos más representativos registrados el 09 de mayo en una secuencia termal. En el panel inferior de esta imagen se observa la variación de la TMA a lo largo de la secuencia de lo cual se puede resaltar: 1. La anomalía térmica del borde suroriental del cráter, que posteriormente se pudo evidenciar en las cámaras de rango visible (TMA > 200 °C) y que se mantiene constante. 2. La primera explosión de la secuencia. 3. La explosión de más alta temperatura (TMA 600 °C) de la cual se desencadena el flujo piroclástico. 4. El inicio del flujo piroclástico (TMA 400 °C). 5. Los bloques desprendidos del flujo piroclástico con altas temperaturas (350°C).
Es importante mencionar que las temperaturas representadas en la figura no son temperaturas absolutas y, debido a distancia de captura y otros factores como las condiciones ambientales, pueden estar subestimadas.

Informe Especial Volcán El Reventador N° 2024-001
Figura 7. Imágenes térmicas representativas obtenidas de una secuencia térmica capturada el 09 de mayo de 2024 en el volcán El Reventador (Elaborado por: M. Almeida – IGEPN).


Imágenes satelitales
De las imágenes obtenidas por la constelación de satélites PlanetScope (https://earth.esa.int/eogateway/missions/planetscope) se recuperó dos imágenes satelitales de la zona del volcán El Reventador, para el 24 de febrero de 2023 (Fig. 8a) y el 03 de junio de 2024 (Fig. 8b). En la imagen del 24 de febrero se puede apreciar la morfología del cráter del volcán con una depresión hacia el suroriente. En esta depresión se ubican las anomalías termales de la Figura 6 c y d, asociadas a material volcánico muy caliente en su interior. En la imagen del 03 de junio se pueden apreciar las nuevas quebradas que aparecieron debido al paso de los flujos piroclásticos, derivados de algunas explosiones, direccionados principalmente hacia el sur y suroriente del volcán.

El ancho de la depresión que ha favorecido la generación de flujos piroclásticos es de aproximadamente 125 m, y de ésta se forman las dos pequeñas quebradas, que en la zona alta tienen un ancho variable de 50 - 60 metros. Las quebradas tienen una longitud total de aproximadamente 1.2 km sobre el flanco sur y suroriental.

Informe Especial Volcán El Reventador N° 2024-001
Figura 8. Imágenes Satelitales Planet del volcán El Reventador del 24 de febrero de 2023 y el 03 de junio de 2024, obtenidas gracias a la constelación de satélites PlanetScope (Elaborado por: M. Almeida – IGEPN).


Desgasificación
La desgasificación asociada al volcán El Reventador ha sido observada gracias a los datos generados por el sensor TROPOMI a bordo del satélite Sentinel 5-P. Estos datos han sido analizados utilizando un script de Google Engine desarrollado por C. Laverde del Servicio Geológico Colombiano. Las limitaciones del método son principalmente las bajas concentraciones detectadas por el sensor, representadas como unidades Dobson (DU). Adicionalmente, al ser un instrumento satelital, la escala de la imagen obtenida para la medición de SO2 es muy amplia, por lo que los resultados pueden estar fácilmente influenciados por la desgasificación de otros volcanes cercanos. Sin embargo, estos resultados pueden considerarse referenciales.

La Figura 9a muestra cuatro mapas con la media mensual de SO2 sobre el volcán, en donde se puede apreciar un incremento en la cantidad de gas representada por la anomalía de color rojo (máx.: 0.2 DU) en el mapa del 2 de mayo hasta el 2 de junio de 2024. Estas anomalías son más débiles hacia los meses precedentes (abril, marzo y febrero de 2024).
La serie temporal de la Figura 9b muestra que desde febrero la cantidad (masa) de SO2 se ha ido incrementando paulatinamente, sin sobrepasar otros picos de actividad detectados en 2023, y 2022.

Informe Especial Volcán El Reventador N° 2024-001
Figura 9. Datos de masa de SO2 obtenidos por el sensor TROPOMI a bordo del satélite Sentinel 5-P. Analizados utilizando el script de Google Engine desarrollado por C. Laverde del Servicio Geológico Colombiano. a) Serie temporal gráfica de la media mensual de SO2 sobre el volcán entre los meses de febrero a junio de 2024. b) Serie temporal del máximo diario de SO2 (Elaborado por: M. Almeida – IGEPN; C. Laverde - SGC).


Escenarios eruptivos
En base a las observaciones realizadas, se considera que el Volcán El Reventador está en un episodio de mayor explosividad con la formación más frecuente de pequeños flujos piroclásticos. Este tipo de actividad es similar a otros periodos recientes observados en el Reventador, por ejemplo, en 2017 y 2022.

El escenario eruptivo más probable a corto plazo (días a semanas) es que esta actividad continúe y siga generando flujos piroclásticos de tamaño pequeño. Mientras éstos se mantengan en los tamaños observados hasta el momento no representan una amenaza directa a zonas pobladas o infraestructuras. Sin embargo, a medida que estos sigan descendiendo producirían una acumulación de material volcánico suelto hacia la base del cono volcánico, material que sería fácilmente removilizado por las lluvias, con la consecuente generación de lahares. Debido a su ubicación estos flujos descenderían por el río Marker.

En caso de aumentar la tasa de ascenso de magma y, en consecuencia, la actividad en superficie del volcán, se podrían producir colapsos de mayor tamaño del flanco, flujos piroclásticos de mayor tamaño y eventualmente una emisión de flujos de lava, como ya ha sucedido en ocasiones anteriores (e.g. 2018, 2022). Las zonas impactadas, dependen del volumen de material que pudiere colapsar y el volumen de lava emitido. En ocasiones anteriores, estos fenómenos han llegado hasta 2.5 km del cráter. Este escenario es menos probable, sin embargo, debe ser considerado.


Recomendaciones

En caso de lluvias fuertes, mantenerse lejos de los ríos y las quebradas que nacen en el volcán.


Referencias
• Almeida, M., Gaunt, H. E., & Ramón, P. (2019). Ecuador’s El Reventador volcano continually remakes itself, Eos, 100.
• Hall, M., Ramón, P., Mothes, P., LePennec, J. L., García, A., Samaniego, P., & Yepes, H. (2004). Volcanic eruptions with little warning: The case of Volcán Reventador’s Surprise November 3, 2002 Eruption, Ecuador. Revista geológica de Chile, 31(2), 349-358.
• Hidalgo, S., Bernard, B., Mothes, P., Ramos, C., Aguilar, J., Andrade, S.D., Samaniego, P., Yepes, H., Hall, M., Alvarado, A., Segovia, M., Ruiz, M., Ramón, P., Vaca, M., & IG-EPN staff. (2023). Hazard assessment and monitoring of Ecuadorian volcanoes: Challenges and progresses during four decades since IG-EPN foundation. Bulletin of Volcanology, 86(1), 4. https://doi.org/10.1007/s00445-023-01685-6
• IGEPN, 2024. Informe anual de la actividad del volcán El Reventador - 2023, Quito, Ecuador.
• Vallejo, S., Diefenbach, A. K., Gaunt, H. E., Almeida, M., Ramón, P., Naranjo, F., & Kelfoun, K. (2024). Twenty years of explosive-effusive activity at El Reventador volcano (Ecuador) recorded in its geomorphology. Frontiers in Earth Science, 11, 1202285. https://doi.org/10.3389/feart.2023.1202285


Elaborado por: Marco Almeida Vaca, Silvana Hidalgo, Stephen Hernández, Fernanda Naranjo, Benjamin Bernard, Anais Vásconez, Francisco Vasconez, Daniel Andrade, Silvia Vallejo.

Con la colaboración de: Carlos Laverde – Servicio Geológico Colombiano, Pedro Espín - Universidad de Leeds.

Instituto Geofísico
Escuela Politécnica Nacional

Fin del proceso eruptivo del volcán Fernandina (La Cumbre)

Informe Especial Volcán Fernandina N° 2024-004
PORTADA: Mapa de los flujos de lava de la erupción del volcán Fernandina (La Cumbre) ocurrida entre marzo y mayo de 2024. El mapa fue elaborado con imágenes satelitales de Sentinel-2 y PlanetScope. Elaborado por: F.J. Vasconez - IG-EPN.


Agradecimientos

El Instituto Geofísico de la Escuela Politécnica Nacional (IG-EPN) agradece al Parque Nacional Galápagos, Ministerio de Medio Ambiente, Agua y Transición Ecológica, SILVERSEA, Universidad de Turín (Italia), Universidad de Leeds (UK), Universidad de Dublín (UK) y Universidad Autónoma de México (México) por su colaboración. Su contribución permitió obtener información relevante para la vigilancia del proceso eruptivo de Fernandina 2024.


Resumen

El 2 de marzo de 2024, a las 23h50 TL (Galápagos), el volcán Fernandina (La Cumbre) inició un nuevo proceso eruptivo el cual terminó entre el 8 y 9 de mayo de 2024, después de ˜68 días de actividad. La erupción se caracterizó por la emisión de gases volcánicos y flujos de lava. Los gases volcánicos, principalmente SO2, tuvieron valores máximos al inicio de la erupción (> 30000 toneladas), pero en los días subsiguientes disminuyeron significativamente. Durante la mayor parte de la erupción las medidas de SO2 fluctuaron entre 100 y 1000 toneladas. Sin embargo, desde el 8 de mayo no se registran valores de SO2 o fueron menores a 10 toneladas.

La erupción se dio a partir de 20 fisuras en el borde superior suroriental de la caldera, con una longitud total de 4,3 km. Todas las fisuras estuvieron activas por un máximo de dos días emitiendo flujos de lava, excepto por la fisura número 13, que fue la única activa durante todo el proceso eruptivo (˜68 días). Esta fisura emitió flujos de lava hacia la zona costera a través de túneles de lava. La tasa de emisión de lava fue de aproximadamente 200 m3/s, al inicio de la erupción, y progresivamente disminuyó a menos de 0,5 m3/s. Los flujos de lava cubrieron un área aproximada de 15,5±0,8 km2 (˜1550 hectáreas) y alcanzaron el mar el día 6 de abril, extendiendo la superficie de la isla en un área aproximada de 0,1 km2 (10 hectáreas).

Se estima que el volumen total de material volcánico emitido durante la erupción fue de ˜60,5±30 millones de m3. Estos valores sugieren que la erupción del volcán Fernandina de este año es posiblemente la más grande de los últimos 40 años; superando a las erupciones ocurridas en los años 1995 y 2009.

Debido al fin de la actividad eruptiva los niveles para el volcán Fernandina son: interna y superficial BAJA con tendencia SIN CAMBIO.

Cómo citar/how to cite: IGEPN (2024) – Informe Volcánico Especial – Fernandina – N° 2024-004.


Anexo técnico-científico

Antecedentes
El volcán Fernandina (La Cumbre) es el volcán activo más occidental de las Islas Galápagos. Desde los años 1800 el volcán Fernandina ha tenido entre 28 y 30 erupciones, siendo esta la mayor tasa de recurrencia de erupciones en las Islas Galápagos. Típicamente, las erupciones en Fernandina se caracterizan por la emisión de gases volcánicos sin contenido de ceniza y de flujos de lava a través de un sistema de fisuras. El sábado 2 de marzo de 2024 a las 23h50 TL (Galápagos) el volcán inició un nuevo periodo eruptivo (IGEPN, 2024) luego de 4 años de su última erupción (IGEPN, 2020a y 2020b). Esta erupción fue el resultado de un proceso de deformación del suelo o “inflación” causado por el ingreso de nuevo material al reservorio magmático somero detectado desde el año 2020 (IGEPN, 2021).


Actividad Interna
La actividad interna se relaciona con los procesos volcánicos que ocurren en zonas subterráneas, es decir, a varios kilómetros de profundidad. Esta actividad es vigilada con estaciones sísmicas, GPS de alta precisión, inclinómetros e instrumentos satelitales. Las medidas obtenidas por estos instrumentos permiten tener una idea general, aunque indirecta, de los procesos que ocurren en estas zonas profundas, que de otra forma son inaccesibles.


Sismicidad
En el sismograma de la figura 1 se observa un evento sísmico de 4.4 Mlv el día 2 de marzo, localizado a 20 km al SE de la isla Fernandina (https://earthquake.usgs.gov/earthquakes/eventpage/us7000m3wt/executive). Posteriormente, se registra un enjambre de sismos pre-eruptivo que empieza a las 22h30 TL (04h30 UTC – recuadro naranja en la figura 1). Una hora y 20 minutos después de dicho enjambre se observa el inicio de la erupción. El sismograma muestra la componente vertical de la estación PAYG, ubicada en la Isla Santa Cruz, a 140 km de la Isla Fernandina para los días 2 y 3 de marzo 2024, donde se aplicó un filtro de frecuencias de entre 2 y 8 Hz.

Informe Especial Volcán Fernandina N° 2024-004
Figura 1: Sismograma de la estación PAYG ubicada en la Isla Santa Cruz a 140 km de la Isla Fernandina en donde se observa la actividad sísmica previa y durante el inicio de la erupción. Las horas están en UTC (Tiempo Universal). Elaborado por: S. Hernández - IG-EPN.


Deformación
Utilizando interferometría radar de apertura sintética (InSAR por sus siglas en inglés) con imágenes de Sentinel-1 de la Agencia Espacial Europea, se obtuvo una serie temporal de la deformación superficial del suelo en el área del centro de la caldera (Figura 2a). Esta serie se generó a partir de imágenes satelitales del periodo entre noviembre 2023 y mayo de 2024. En la serie se observa que antes de la erupción hubo un incremento positivo (inflación) en la deformación del suelo asociado al ingreso de magma al reservorio somero. Por lo contrario, después del inicio de la erupción se observa un decrecimiento (deflación) con una diferencia de ˜10 cm. Esta deflación está asociada a la salida de material volcánico desde zonas profundas debido al proceso eruptivo como tal. Adicionalmente, se dispone del mapa de velocidades (Figura 2b) obtenido mediante imágenes SAR, en el cual se observa deflación (color azul) en el área de la caldera, lo cual es coherente con la pérdida de volumen al interior del reservorio magmático debido a la emisión de los flujos de lava.

Informe Especial Volcán Fernandina N° 2024-004
Figura 2. a) Serie temporal de deformación del volcán Fernandina (La Cumbre) entre noviembre 2023 y mayo 2024 (InSAR-Sentinel-1). Posterior al inicio de la erupción se observa deflación en la superficie de la caldera asociado a la perdida de volumen debido a la erupción. Cortesía: LicSAR COMET b) Mapa de velocidades en el volcán Fernandina entre el 5 y el 17 de mayo de 2024. Los colores azules indican deflación o hundimiento del suelo. Cortesía: LicSAR COMET.


Actividad Superficial
La actividad superficial es aquella relacionada con los procesos volcánicos que ocurren en la superficie, es decir, hacia la atmósfera. La actividad superficial durante la actual erupción de Fernandina se manifiesta con emisiones de gases volcánicos y flujos de lava. La cuantificación adecuada de estos fenómenos permite clasificar una erupción en términos de magnitud (pequeña o grande) e intensidad.


Emisión de gases volcánicos

Desde las 23h50 TL, del 2 de marzo, el satélite geoestacionario GOES-16 registró una emisión de gas de 2-3 km sobre el nivel de la cumbre (snc) con contenido muy bajo de ceniza. La emisión de gas fue intensa hasta las 04h00 TL del 3 de marzo, y posteriormente disminuyó. La nube de gas se dirigió hacia el occidente, nor-occidente y sur-occidente. Los días siguientes se observó nubes de gas de baja altura (< 200 msnc) con dirección predominante hacia el occidente, pero con cambios al oriente, norte y sur, según la dirección de los vientos.

Los sensores satelitales OMI, OMPS y TROPOMI registraron las emisiones de SO2 relacionados con la erupción de Fernandina a lo largo de todo el periodo eruptivo. Dichas medidas son procesadas por diferentes instituciones internacionales como: NASA (Estados Unidos), MOUNTS (México) y DLR (Alemania), y también por el IG-EPN (Figura 3). Las medidas más altas se registraron al inicio de la erupción con > 30000 toneladas. Los días siguientes los valores descendieron fluctuando entre 1000 y 100 toneladas de SO2 (Figura 3). Desde el 8 de mayo estas medidas descendieron rápidamente a cero o por debajo de las 10 toneladas, indicando el fin del proceso eruptivo.

Informe Especial Volcán Fernandina N° 2024-004
Figura 3. Masa de dióxido de azufre SO2 detectada por los diferentes sensores satelitales (OMPS, OMI, TROPOMI) durante el periodo del 3 de marzo al 21 de mayo de 2024. Los puntos verdes son el valor promedio de los diferentes sistemas internacionales mientras que los triángulos rojos son los calculados por el IG-EPN. Las líneas entrecortadas de color verde y rojo indican el promedio móvil cada 3 días para indicar la tendencia de los datos. Nótese que el gráfico está en escala logarítmica. Elaborado por: F.J. Vasconez - IG-EPN.


Adicionalmente, durante la visita de campo del 6 de marzo se obtuvo medidas de SO2 con un DOAS Mobile (Sistema de espectroscopia de absorción óptica diferencial - móvil), el cual detectó concentraciones entre 100 y 120 ppmm, considerados como moderados. También se realizó una travesía en barco para la medición de gases volcánicos utilizando un equipo MultiGAS. Este equipo mide diferentes especies gaseosas provenientes del magma como agua (H2O), dióxido de azufre (SO2), dióxido de carbono (CO2), y ácido sulfhídrico (H2S). Las razones o proporciones entre las concentraciones de estos gases ayudan a tener una visión indirecta de las condiciones del reservorio magmático. Los resultados muestran un máximo de SO2/H2S de 1,3. Este valor es bajo y se asocia a una disminución en la emisión de SO2; lo que es coherente con la disminución de la emisión de SO2 detectada por los sensores satelitales luego del inicio de la erupción. El equipo MultiGAS no detectó valores de dióxido de Carbono, ni de agua durante las mediciones.


Flujos de lava

Las constelaciones de satélites de rango óptico Sentinel-2, Landsat-8 y PlanetScope han permitido seguir la evolución de la erupción en el tiempo cuando las condiciones climáticas han sido adecuadas. Se identificaron 20 fisuras eruptivas distribuidas en el borde externo del flanco suroriental de la caldera. Estas fisuras tienen longitudes de entre 20 y 600 metros y se ubican en las cotas de 1100 y 1200 m sobre el nivel del mar (snm). La extensión total de la zona de las fisuras es de aproximadamente 4,3 km. Además, las imágenes satelitales permitieron elaborar mapas de la zona inundada por flujos de lava y su evolución a lo largo del tiempo (Figura 4). El mayor alcance se dio entre el 3 y 31 de marzo con 11 km mientras que entre el 01 de abril y el fin de la erupción (8-9 de mayo) su recorrido no superó los 2,5 km.

Informe Especial Volcán Fernandina N° 2024-004
Figura 4. Mapas de la zona inundada por flujos de lava entre el 3 de marzo y 19 de mayo de 2024. El recuadro rojo en la figura “a” muestra la zona amplificada del flanco suroriental por la cual los flujos de lava se movilizaron. Los mapas fueron elaborados utilizando imágenes adquiridas por la constelación de satélites PlanetScope. (Elaborado por: S. Vallejo - IG-EPN).


Con la información satelital se determinó que, para el 15 de mayo, el frente del flujo de lava tenía un alcance máximo de 13,4 km superando la línea de costa por aproximadamente 210 metros. Los flujos de lava cubren un área aproximada de ˜15,5±0,8 km2 (˜1550 hectáreas) y la isla creció en 0,1 km2 (10 hectáreas). Además, las imágenes satelitales permitieron observar que las fisuras estuvieron activas por un máximo de dos días, mientras que únicamente la fisura 13 se mantuvo activa durante toda la erupción lo que también se constató durante la visita de campo del 6 de marzo. Esta fisura alimentaba con lava las zonas bajas mediante túneles. Además, se determinó que un área de ˜2,7 km2 fue afectada por incendios debido a la interacción de los flujos de lava calientes con la vegetación circundante, entre 360 m snm y 1300 m snm.

Adicionalmente, los sensores satelitales VIIRS y MODIS detectaron anomalías de calor en la superficie terrestre, dos veces al día, en términos de energía radiante (FRP) en la zona del volcán. Esta información se utilizó para hacer un conteo diario de anomalías térmicas, vigilar el avance de los flujos de lava y elaborar mapas preliminares diarios de las zonas inundadas por los flujos. En la figura 5 se muestran el conteo de anomalías termales y su acumulativo. El día 3 de marzo (inicio de la erupción en UTC) se registró el mayor número de anomalías térmicas con más de 1500. Posteriormente, su número descendió entre 100 y 500 por día. Adicionalmente, se observó valores mínimos los días 13, 19, 21 y 26 de marzo. El número de anomalías termales fue fluctuante debido al proceso eruptivo, la formación de túneles de lava y las condiciones de nubosidad en la zona. Desde el 8 de mayo se observó una disminución significativa en el número de anomalías térmicas que posteriormente vuelve a incrementarse. Sin embargo, estas anomalías, posteriores al 8 de mayo son de baja energía y están posiblemente asociadas al calor remanente de los flujos de lava mientras se enfrían.

Informe Especial Volcán Fernandina N° 2024-004
Figura 5. Conteo diario de anomalías termales reportadas durante la erupción del volcán Fernandina. Fuente: FIRMS (NASA). Elaborado por: F.J. Vasconez - IG-EPN.


La figura 6 muestra la ubicación de las anomalías termales registradas por los sensores VIIRS y reportados por el sistema FIRMS, las variaciones de energía térmica (FRP) y su alcance máximo (en línea recta). Las anomalías térmicas se ubican en el flanco suroriental de Fernandina. Los valores de energía radiante (FRP) fueron más intensos al inicio de la erupción con un máximo de 545,9 MW y posteriormente disminuyeron hasta alcanzar un promedio de 70 MW. Desde el 18 de marzo se observó una disminución en la energía radiante cuyos máximos se mantuvieron entre 100 y 250 MW. Adicionalmente, esta información permitió identificar el arribo de los flujos de lava al mar desde el 6 de abril; cuando los alcances máximos empezaron a sobrepasar el límite de la línea de costa representado por una línea azul entrecortada en la figura 6. Desde el día 9 de mayo los máximos diarios de FRP cayeron por debajo de 100 MW y desde el 11 de mayo por debajo de 20 MW. Valores inferiores a 20 MW están asociados, en este caso, al calor remanente de los flujos de lava durante el tiempo que toma su enfriamiento. Esta información sugiere el fin del proceso eruptivo en Fernandina desde el 9 de mayo de 2024.

Informe Especial Volcán Fernandina N° 2024-004
Figura 6. Mapa de ubicación de las anomalías termales reportadas por FIRMS en el tiempo y variaciones de energía radiante (FRP) y alcance máximo de los flujos de lava. Elaborado por: F.J. Vasconez - IG-EPN utilizando el programa lavaflow mapper (Vasconez et al., 2022).


El alcance diario de los flujos de lava ha ido cambiando según el avance de los flujos de lava hacia cotas más bajas (Figura 7). Para el 3 de marzo el frente del flujo de lava tenía un alcance de ˜6,6 km, para el 4 de marzo de ˜7,9 km, el 18 de marzo ˜9,8 km. Posteriormente, se mantuvo estable hasta el 28 de marzo a una distancia de 9,9 km. A partir del 29 de marzo se observó un nuevo incremento paulatino en el avance de los flujos de lava alcanzando un máximo de ˜13,2 km el 6 de abril (Figura 7). Finalmente, desde el 7 de abril hasta el 6 de mayo el avance del flujo de lava disminuyó significativamente a 0,4 km. Estos valores muestran cambios significativos en las velocidades de avance de los flujos de lava. Para el inicio de la erupción se estimó una velocidad de ˜342 m/h, luego un decaimiento a ˜51 m/h y ˜7 m/h, para el 4 y 18 de marzo, respectivamente (Figura 7). Desde el 29 de marzo se observó un nuevo incremento en la velocidad con un promedio de ˜17 m/h y desde el 7 de abril disminuyó a un promedio de 0,5 m/h hasta el fin de la erupción (Figura 7).

Informe Especial Volcán Fernandina N° 2024-004
Figura 7. Alcance máximo y velocidad del avance del frente de flujos de lava durante la erupción del volcán Fernandina 2024. La información se obtuvo con datos de los sensores satelitales VIIRS (FIRMS). Nótese que el eje de velocidad (derecha) está en escala logarítmica. (Elaborado por: F.J. Vasconez - IG-EPN).


Por otro lado, en colaboración con la Universidad de Turín (Italia), el sistema satelital MIROVA calculó una tasa de extrusión de ˜200 m3/s al inicio de la erupción, la cual decayó exponencialmente hasta estabilizarse a una tasa de ˜5 m3/s, y que posteriormente se redujo a ˜0.5 m3/s (Figura 8a). Adicionalmente, MIROVA estimó un volumen total de lava emitida de ˜60,5±30 millones de m3 (Figura 8b). Estos valores confirman que la actual erupción de Fernandina es la más grande, en términos de volumen emitido, de los últimos 40 años, superando las erupciones de los años 1995 con 55,3 millones de m3 (Bourquin et al., 2009) y de 2009 con 57 millones de m3 (Rowland et al., 2003). La erupción de Fernandina 2024 emitió aproximadamente una masa de 1,35x1011 kg en ˜68 días, lo que implica una magnitud de 4,13 e intensidad de 7,4.

Informe Especial Volcán Fernandina N° 2024-004
Figura 8. Datos del sistema MIROVA. a) Serie temporal de la tasa de emisión de lava. b) Serie temporal del volumen de lava emitido en el tiempo (Cortesía: Diego Coppola – Universidad de Turín, Italia).


Conclusiones
En base a las observaciones realizadas, la actual erupción del volcán Fernandina (La Cumbre) terminó el 8-9 de mayo y tuvo una duración de ˜68 días. Los principales fenómenos asociados a la erupción fueron la emisión de flujos de lava a través de un sistema de fisuras circunferencial en la parte alta del flanco suroriental del volcán, siendo la fisura 13 la más activa a lo largo de la erupción mientras que el resto de las fisuras estuvieron activas únicamente durante los primeros dos días de actividad. Las lavas cubrieron un área aproximada de 15,5±0,8 km2 con un volumen aproximado de ˜60±30 millones de m3. Los flujos de lava llegaron al mar el 6 de abril y extendieron la superficie de la isla en aproximadamente 0,1 km2 (10 hectáreas). Además, las emisiones de gases volcánicos, principalmente SO2, tuvieron un máximo de ˜30000 toneladas al inicio de la erupción y posteriormente fluctuaron entre 100 y 1000 toneladas. El proceso eruptivo finalizó en Fernandina es el más grande de los últimos 40 años. Finalmente, se observó la ocurrencia de incendios asociados a las altas temperaturas de los flujos de lava que entraron en contacto con la vegetación, principalmente entre 360 y 1300 m snm, similar a lo que ocurrió en la erupción de Fernandina de 2017.


Recomendaciones

No existen asentamientos humanos en la Isla Fernandina. Sin embargo, se recomienda a los turistas no acercarse a la zona de depositación de los flujos de lava, aunque la erupción haya terminado. En esta erupción se formaron túneles de lava los cuales son muy inestables y pueden colapsar repentinamente. Además, estas zonas se mantienen calientes y las rocas son muy cortantes. En caso de caída, las personas pueden verse severamente afectadas.


Referencias
Bourquin, J., S. Hidalgo, B. Bernard, P. Ramón, S. Vallejo, and A. Parmigiani (2009). Fernandina volcano eruption, Galápagos Islands, Ecuador: SO2 and thermal field measurements compared with satellite data: Informal report, Instituto Geofísico Escuela Politécnica Nacional (IGEPN).
IGEPN (2020a) - Informe Volcánico Especial – Fernandina – 2020 - N°02 (https://www.igepn.edu.ec/servicios/noticias/1788-informe-especial-del-volcan-fernandina-n-2-2020)
IGEPN (2020b) - Informe Volcánico Especial – Fernandina – 2020 - N°03 (https://www.igepn.edu.ec/servicios/noticias/1792-informe-especial-del-volcan-fernandina-n-3-2020)
IGEPN (2021) - Informe Volcánico Especial – Fernandina – 2021 - N°01 (https://www.igepn.edu.ec/servicios/noticias/1792-informe-especial-del-volcan-fernandina-n-1-2021)
IGEPN. (2024). Informe Volcánico Especial – Fernandina – N° 2024-001 (https://www.igepn.edu.ec/servicios/noticias/2106-informe-volcanico-especial-fernandina-n-2024-001)
Lazecký, M., Spaans, K., González, P. J., Maghsoudi, Y., Morishita, Y., Albino, F., ... & Wright, T. J. (2020). LiCSAR: An automatic InSAR tool for measuring and monitoring tectonic and volcanic activity. Remote Sensing, 12(15), 2430.
Rowland, Scott K., Andrew J. L. Harris, Martin J. Wooster, Falk Amelung, Harold Garbeil, Lionel Wilson, and Peter J. Mouginis-Mark. “Volumetric Characteristics of Lava Flows from Interferometric Radar and Multispectral Satellite Data: The 1995 Fernandina and 1998 Cerro Azul Eruptions in the Western Galápagos.” Bulletin of Volcanology 65, no. 5 (July 1, 2003): 311–30. https://doi.org/10.1007/s00445-002-0262-x.
Vasconez, Francisco Javier, Juan Camilo Anzieta, Anais Vásconez Müller, Benjamin Bernard, and Patricio Ramón. “A Near Real-Time and Free Tool for the Preliminary Mapping of Active Lava Flows during Volcanic Crises: The Case of Hotspot Subaerial Eruptions.” Remote Sensing, 2022, 23. https://doi.org/10.3390/rs14143483.


Informes previos

IGEPN. (2024a). Informe Volcánico Especial – Fernandina – N° 2024-001. https://www.igepn.edu.ec/servicios/noticias/2106-informe-volcanico-especial-fernandina-n-2024-001
IGEPN. (2024b). Informe Volcánico Especial – Fernandina – N° 2024-002. https://informes.igepn.edu.ec/igepn-registro-web/pages/public/InformeGenerado.jsf?directorio=31979
IGEPN. (2024c). Informe Volcánico Especial – Fernandina – N° 2024-003. https://informes.igepn.edu.ec/igepn-registro-web/pages/public/InformeGenerado.jsf?directorio=32134

 

Elaborado por: Francisco J. Vasconez, Silvia Vallejo, Santiago Aguiza, Marco Almeida, Stephen Hernández
Revisado por: Pablo Palacios, Benjamín Bernard, Mónica Segovia, Silvana Hidalgo
Con la colaboración de: Diego Coppola (U. Turín, Italia), Sébastien Valade (UNAM, México), Pedro Espín (Universidad de Leeds, Inglaterra).
Corrector de Estilo: Gerardo Pino

Instituto Geofísico
Escuela Politécnica Nacional

Actualización de la erupción en el volcán Fernandina (La Cumbre)

Informe Especial Volcán Fernandina N° 2024-003
Mapa de los flujos de lava de las últimas erupciones del volcán Fernandina registrados por el sensor satelital VIIRS de acuerdo con la información compartida por la NASA (FIRMS) y una metodología desarrollada en el IG-EPN (Vasconez F.J. et al., 2022)


Agradecimientos

El IG-EPN agradece al Parque Nacional Galápagos, en especial al Dr. Arturo Izurieta e Ing. Jimmy Bolaños; al Ministerio de Medio Ambiente, Agua y Transición Ecológica, especialmente al Ing. Alfredo Carrasco, y a la empresa de cruceros SILVERSEA que permitieron la visita de técnicos del IG-EPN a la zona de la erupción del volcán Fernandina entre el 5 y 7 de marzo. La visita permitió obtener información relevante para la vigilancia del actual periodo eruptivo del volcán.


Resumen
El 2 de marzo de 2024, a las 23h50 TL (Galápagos), el volcán Fernandina (La Cumbre) inició un nuevo periodo eruptivo. Tras cumplirse un mes de actividad, la erupción se caracteriza por la emisión de gases volcánicos y flujos de lava. Los gases volcánicos, principalmente SO2, tuvieron un pico al inicio de la erupción de más de 30000 toneladas, pero disminuyeron significativamente en los siguientes días (< 1000 t). Los valores de SO2 han sido fluctuantes dentro del rango de 100 a 1000 toneladas diarias. La erupción abrió 20 fisuras en el borde superior suroriental de la caldera, con una longitud de 4,3 km, de donde se han emitido varios flujos de lava. Desde el 6 de marzo la única fisura activa es la número 13, que ha aportado inicialmente material volcánico a una tasa de ~200 m3/s y que a la fecha es de ~5 m3/s. Los flujos de lava avanzaron progresivamente hacia las zonas más bajas y ahora están a menos de 1.3 km de la línea de costa. De manera preliminar, se estimó un volumen de ~44 millones de m3 sobre un área aproximada de ~12 km2 (hasta el 1 de abril). Estos valores demuestran que la actual erupción es la más grande de los últimos 15 años, superada solo por la del año 2009.

Al emitir este informe de actualización, los niveles de actividad se catalogan como: INTERNA y SUPERFICIAL: MODERADO con tendencia SIN CAMBIO.

Cómo citar/how to cite: IGEPN (2024) – Informe Volcánico Especial – Fernandina – N° 2024-003.

 

Antecedentes
El volcán Fernandina (La Cumbre) es el volcán más occidental de las Islas Galápagos y es también uno de los más activos. Desde los años 1800 el volcán Fernandina ha tenido entre 28 y 30 erupciones, siendo esta la mayor tasa de recurrencia de erupciones en las Islas Galápagos. El sábado 2 de marzo de 2024 a las 23h50 TL (Galápagos) el volcán inició un nuevo periodo eruptivo, luego de 4 años de su última erupción (IGEPN, 2020a y b). Las erupciones en Fernandina se caracterizan por la emisión de flujos de lava a través de un sistema de fisuras y la emisión continua de gases volcánicos, sin contenido de ceniza. La actual erupción es el resultado de un proceso de deformación del suelo “inflación” causado por el ingreso de nuevo magma al sistema, detectado desde el año 2020 (IGEPN, 2021).

 

Anexo técnico-científico

Actividad Interna
La actividad interna se relaciona con los procesos volcánicos que ocurren en zonas subterráneas, es decir, a varios kilómetros de profundidad. Esta actividad es típicamente vigilada con estaciones sísmicas, GPS de alta precisión, inclinómetros y satélites. Estas herramientas permiten tener una idea general, aunque indirecta, de los procesos que ocurren en estas zonas profundas, que de otra forma son inaccesibles.

 

Sismicidad
La figura 1 es un sismograma de los días 2 y 3 de marzo 2024, utilizando un filtro de frecuencias de entre 2-8 Hz. Este sismograma corresponde a la estación PAYG, ubicada en la Isla Santa Cruz, a 140 km de la Isla Fernandina. En el sismograma se observa un sismo de 4.4 Mlv el día 2 de marzo. Posteriormente, se registra un enjambre pre-eruptivo que empieza a las 22h30 TL (04h30 UTC) y 1 hora y 20 minutos después se da el inicio de la erupción.

Informe Especial Volcán Fernandina N° 2024-003
Figura 1: Sismograma de la estación PAYG ubicada en la Isla Santa Cruz a 140 km de la Isla Fernandina en donde se observa el inicio de la erupción. (Elaborado por: S. Hernández - IG-EPN).


Deformación
Se realizó el procesamiento conocido como Interferometría radar de apertura sintética (InSAR por sus siglas en inglés) con imágenes de la constelación de satélites Sentinel-1 de la Agencia Espacial Europea (ESA). Con ello se dispone de resultados de series temporales con imágenes procesadas desde enero 2017 hasta el 6 de marzo del 2024, con órbita descendente, en el área correspondiente al centro de la caldera. En la última información se observa un cambio negativo asociado a un proceso de deflación en la serie temporal (Figura 2a) que se interpreta como la salida de material desde la cámara magmática, asociada al actual proceso eruptivo. Adicionalmente, se dispone del mapa de velocidades (Figura 2b) obtenido mediante imágenes SAR, en el cual se observa zonas con deflación (color azul) en el área del flanco centro y oriental de la caldera, lo cual es coherente con la pérdida de volumen al interior del reservorio magmático debido a la erupción.

Informe Especial Volcán Fernandina N° 2024-003
Figura 2. a) Serie temporal de deformación del volcán Fernandina (La Cumbre) entre enero 2017 y marzo 2024 (InSAR-Sentinel donde el último punto evidenciaría el cambio generado por efecto de la actividad eruptiva del 2 de marzo. Cortesía: LicSAR COMET - https://comet.nerc.ac.uk/comet-volcano-portal/volcano-index/South%20America/Ecuador/Fernandina b) Mapa de desplazamientos en el volcán Fernandina entre el 7 y el 31 de marzo del 2024. Los colores azules indican deflación o hundimiento del suelo. Cortesía: LicSAR COMET.


Actividad Superficial
La actividad superficial se relaciona con los procesos volcánicos que ocurren en zonas superficiales, es decir, hacia la atmósfera. La actividad superficial durante la actual erupción de Fernandina se manifiesta como emisiones de gases volcánicos y flujos de lava. La cuantificación adecuada de estos fenómenos permite clasificar una erupción en términos de magnitud (pequeña o grande) e intensidad.

 

Emisión de gases volcánicos

Desde las 23h50 TL, del 2 de marzo, el satélite geoestacionario GOES-16 registró una emisión de gas de 2-3 km sobre el nivel de la cumbre (snc) con contenido muy bajo de ceniza. La emisión de gas fue intensa hasta las 04h00 TL del 3 de marzo, y posteriormente disminuyó. La nube de gas se dirigió hacia el occidente, nor-occidente y sur-occidente. Los días siguientes se ha observado una nube de gas de tamaño pequeño (< 500 msnc) con dirección predominante hacia el occidente, pero con cambios al oriente y norte según la dirección de los vientos.

Los sensores satelitales OMI, OMPS y TROPOMI registraron las emisiones de SO2 relacionados a la erupción de Fernandina a lo largo de este mes de actividad. Dichos valores son procesados por diferentes instituciones internacionales como: NASA (EEUU), MOUNTS (México) y DLR (Alemania), pero también por el IG-EPN (Figura 3). Los valores más altos se registraron al inicio de la erupción con > 30 mil toneladas. Los días siguientes los valores descendieron a miles y cientos de toneladas de SO2 al momento de la adquisición (Figura 3). Estos valores han sido fluctuantes a lo largo del tiempo con los valores más bajos registrados el 21 y 22 de marzo y 1 de abril 2024.

Informe Especial Volcán Fernandina N° 2024-003
Figura 3. Masa de dióxido de azufre SO2 detectado por los diferentes sensores satelitales (OMPS, OMI, TROPOMI) durante el periodo 3 de marzo al 3 de abril. Los puntos verdes son el valor promedio de los diferentes sistemas internacionales mientras que los triángulos rojos son los calculados por el IG-EPN. (Elaborado por: F.J. Vasconez - IG-EPN).


Adicionalmente, a partir de los datos de DOAS Mobile (Sistema de espectroscopia de absorción óptica diferencial - móvil), se pudo detectar el día 6 de marzo concentraciones de SO2 con valores entre 100 y 120 ppmm, el cual se puede considerar como moderado (Figura 4).

Informe Especial Volcán Fernandina N° 2024-003
Figura 4. Mediciones Mobile DOAS. a) Fotografía de las columnas de gas medidas con el equipo: en la línea entrecortada se resalta en color rojo las zonas donde se registraron los picos de SO2 durante las mediciones. b) Gráfico de concentración (ppmm) detectado por el equipo DOAS Mobile. (Elaborado por: M. Almeida - IG-EPN).


Finalmente, se realizó una travesía en barco para la medición de gases volcánicos utilizando un equipo MultiGAS. Este equipo mide diferentes especies gaseosas provenientes del magma como agua (H2O), dióxido de azufre (SO2), dióxido de carbono (CO2), y ácido sulfhídrico (H2S). La relación entre gases, “razones”, ayuda a tener una visión de las condiciones del reservorio magmático profundo. Los resultados muestran un pico de gas de SO2 y H2S disperso, en concentraciones muy bajas, en la zona suroriental. Estos valores pueden ser remanentes de la desgasificación que se desplaza hacia el occidente midiéndose una razón SO2/H2S de 1.3. Esta razón se asocia a una disminución de SO2; la que es coherente con la disminución de la emisión de SO2 mostrada por otros sensores satelitales luego del inicio de la erupción. El equipo MultiGAS no detectó valores de dióxido de Carbono, ni agua durante las mediciones.

 

Flujos de lava

Los satélites de rango óptico Sentinel-2, Landsat-8 y PlanetScope han permitido seguir la evolución de la erupción en el tiempo cuando las condiciones climáticas han sido adecuadas. La figura 5 recoge las imágenes más importantes. De manera preliminar se identificó 20 fisuras eruptivas distribuidas por el borde externo del flanco suroriental de la caldera. Las fisuras tienen longitudes de entre 20 y 600 metros y se ubican en las cotas de 1100 y 1200 m sobre el nivel del mar (snm). La extensión total de la zona de las fisuras es de aproximadamente 4.3 km. La zona inundada por los flujos de lava ha cambiado con el tiempo, así como su alcance máximo. Para el 4 de abril, el frente del flujo de lava tiene un alcance máximo de 13.2 km y se encuentra a 1.3 km de la línea de costa. Hasta la fecha, los flujos de lava cubren un área de ~12 km2, hasta el 3 de abril (figura 6). Además, las imágenes satelitales permitieron observar que sólo la fisura 13 se mantiene activa durante toda la erupción, lo que también se constató durante la visita de campo del 6 de marzo. Finalmente, se pudo determinar que un área aproximada de 2.7 km2 fue afectada por incendios debido a la interacción de los flujos de lava con la vegetación circundante (figura 6).

Informe Especial Volcán Fernandina N° 2024-003
Figura 5. Imágenes adquiridas por los satélites Sentinel-2 y Landsat-8 para antes y durante la erupción. La combinación de bandas: B12-B11-B8A (Sentinel-2) y B7-B6-B5 (Landsat-8) permiten resaltar las zonas en donde se depositan los flujos de lava. (Elaborado por: F.J. Vasconez - IG-EPN).


Informe Especial Volcán Fernandina N° 2024-003
Figura 6. Mapa preliminar de los flujos de lava y zonas afectadas por incendios del volcán Fernandina, con fecha de corte 3 de abril 2024. El mapa se hizo con imágenes satelitales adquiridas por las constelaciones PlanetScope y Sentinel-2 y en el se observa en color naranja el área cubierta por flujos de lava (aproximado de 12 km2). En amarillo se resalta las zonas que fueron afectadas por incendios en la zona alta debido al paso de los flujos de lava por zonas vegetadas. (Elaborado por: S. Vallejo - IG-EPN).


Adicionalmente, la información de los sensores satelitales VIIRS, los cuales adquieren datos dos veces al día han permitido vigilar el avance de los flujos de lava en el tiempo. El sensor VIIRS detecta anomalías de calor en la superficie terrestre en términos de energía radiante. Esta información es utilizada por el IG-EPN para realizar el conteo de anomalías y posteriormente mapas de las zonas inundadas por flujos de lava. En la figura 7 se muestran anomalías termales diarias y acumulados. El día 2 de marzo (inicio de la erupción) se registró el mayor número de anomalías con más de 1500, posteriormente los valores disminuyeron a menos de 600 y se observan valores mínimos los días 13, 19, 21 y 26 de marzo. El número de anomalías ha ido fluctuando debido al proceso eruptivo, pero también a las condiciones de nubosidad de la zona (figura 7).

Informe Especial Volcán Fernandina N° 2024-003
Figura 7. Número diaria de anomalías termales reportadas por FIRMS (NASA) y su acumulado, correspondiente al volcán Fernandina. (Elaborado por: F.J. Vasconez - IG-EPN).


La figura 8 muestra la ubicación de las anomalías termales registradas por los sensores VIIRS y reportados por el sistema FIRMS, las variaciones de energía térmica y su alcance máximo (en línea recta). Las anomalías termales se ubican en el flanco suroriental de Fernandina. Los valores de energía radiante (FRP) fueron más intensos al inicio de la erupción con un máximo de 545.9 MW y posteriormente han ido disminuyendo, hasta alcanzar un promedio de 116.5 MW. Desde el 18 de marzo se observó una disminución en la energía radiante, pero desde el 28 de marzo se observa un nuevo incremento. En cuanto al alcance diario, este ha ido cambiando. Para el 3 de marzo el frente del flujo de lava tenía un alcance de ~6.6 km, para el 4 de marzo de ~7.9 km, el 17 de marzo ~9.5 km y a partir del 28 de marzo se observa un incremento paulatino alcanzando un máximo el 3 de abril con ~12.3 km. Estos valores muestran velocidades de emplazamiento de los flujos de lava de ~330 m/h al inicio de la erupción y luego un decaimiento de su velocidad a ~54 m/h y ~13 m/h, para el 4 y 17 de marzo, respectivamente. A partir del 28 de marzo se observa un incremento en la velocidad con un promedio de ~20 m/h. Si la tendencia se mantiene, es posible que el frente del flujo de lava llegue al mar en los próximos días. Sin embargo, esto dependerá del desarrollo de la erupción.

Informe Especial Volcán Fernandina N° 2024-003
Figura 8. Mapa de la ubicación de las anomalías termales reportadas por FIRMS en el tiempo y variaciones de energía radiante (FRP) y alcance máximo de los flujos de lava (Elaborado por: F.J. Vasconez - IG-EPN).


El sistema satelital MIROVA (Universidad de Turín, Italia) ha calculado una tasa de extrusión de ~200 m3/s al inicio de la erupción, la cual ha ido decayendo exponencialmente hasta estabilizarse a una tasa de ~5 m3/s (Figura 9a). Adicionalmente, MIROVA estimó un volumen total de lava emitida de ~43.9 millones de m3 (Figura 9b). Estos valores preliminares confirman que la actual erupción de Fernandina es la más grande de los últimos 15 años, siendo por ahora superada por la ocurrida en el año 2009.

Informe Especial Volcán Fernandina N° 2024-003
Figura 9. Datos del sistema MIROVA. a) Serie temporal de la tasa de emisión de lava. b) Serie temporal del volumen de lava emitido (Cortesía: Diego Coppola – Universidad de Turín, Italia).


Escenarios eruptivos

En base a las observaciones realizadas, la actual erupción del volcán Fernandina (La Cumbre) continúa como un típico proceso eruptivo de los volcanes de las Islas Galápagos. Los principales fenómenos asociados a la erupción son: (i) la emisión de flujos de lava a través de una fisura circunferencial en la parte alta del flanco suroriental del volcán, siendo la fisura 13 la más activa; y (ii) la emisión de gases volcánicos.

  • El escenario eruptivo más probable a corto plazo (días a semanas) es que la erupción continue con la posibilidad de la llegada de los flujos de lava al mar en los próximos días. El contacto de los flujos de lava calientes con el agua de mar fría podría producir pequeñas explosiones y la emisión de gases tóxicos por lo que se recomienda no acercarse.
  • El escenario eruptivo medianamente probable a corto plazo (días a semanas) es que la actividad disminuya y termine la erupción.
  • El escenario eruptivo menos probable a corto plazo (días a semanas) es que se dé un nuevo pulso de actividad dentro de la caldera del volcán Fernandina como sucedió en 1968. De ser así, podrían producirse explosiones debido al contacto de la lava con el agua presente en la laguna al interior de la caldera, formando columnas de ceniza.

Adicionalmente, no se descarta la ocurrencia de más incendios asociados a las altas temperaturas de los flujos de lava, tal como ocurrió en la erupción de 2017 y ocurre en la actual erupción. En caso de incendio, la zona afectada podría ser más amplia y dependerá de la dirección y velocidad del viento.

 

Recomendaciones
No existen asentamientos humanos en la Isla Fernandina. Como la dirección predominante del viento es hacia el occidente-noroccidente, las islas pobladas (Isabela, Santa Cruz, Floreana y San Cristóbal) no deberían verse afectadas por gases volcánicos o caída de ceniza, salvo si el viento cambia de dirección. Si los flujos de lava ingresan al mar, se recomienda permanecer a una distancia prudencial, ante la potencial ocurrencia de explosiones pequeñas y/o liberación de gases tóxicos. La ocurrencia de incendios es un fenómeno secundario asociado a las altas temperaturas de los flujos de lava que entran en contacto con la vegetación circundante.

 

Referencias

Bourquin, J., S. Hidalgo, B. Bernard, P. Ramón, S. Vallejo, and A. Parmigiani (2009). Fernandina volcano eruption, Galápagos Islands, Ecuador: SO2 and thermal field measurements compared with satellite data: Informal report, Instituto Geofísico Escuela Politécnica Nacional (IGEPN).
IGEPN (2020a) - Informe Volcánico Especial – Fernandina – 2020 - N°02 (https://www.igepn.edu.ec/servicios/noticias/1788-informe-especial-del-volcan-fernandina-n-2-2020)
IGEPN (2020b) - Informe Volcánico Especial – Fernandina – 2020 - N°03 (https://www.igepn.edu.ec/servicios/noticias/1792-informe-especial-del-volcan-fernandina-n-3-2020)
IGEPN (2021) - Informe Volcánico Especial – Fernandina – 2021 - N°01 (https://www.igepn.edu.ec/servicios/noticias/1792-informe-especial-del-volcan-fernandina-n-1-2021)
IGEPN. (2024). Informe Volcánico Especial – Fernandina – N° 2024-001 (https://www.igepn.edu.ec/servicios/noticias/2106-informe-volcanico-especial-fernandina-n-2024-001)
Lazecký, M., Spaans, K., González, P. J., Maghsoudi, Y., Morishita, Y., Albino, F., ... & Wright, T. J. (2020). LiCSAR: An automatic InSAR tool for measuring and monitoring tectonic and volcanic activity. Remote Sensing, 12(15), 2430.
Vasconez, Francisco Javier, Juan Camilo Anzieta, Anais Vásconez Müller, Benjamin Bernard, and Patricio Ramón. “A Near Real-Time and Free Tool for the Preliminary Mapping of Active Lava Flows during Volcanic Crises: The Case of Hotspot Subaerial Eruptions.” Remote Sensing, 2022, 23. https://doi.org/10.3390/rs14143483.

 

Elaborado por: Francisco J. Vasconez, Santiago Aguiza, Stephen Hernández, Marco Almeida, Silvia Vallejo
Revisado por: Patricia Mothes, Silvana Hidalgo
Con la colaboración de: Diego Coppola (U. Turín, Italia), Sébastien Valade (UNAM, México), Pedro Espín (Universidad de Leeds, Inglaterra).
Corrector de Estilo: Gerardo Pino

Instituto Geofísico
Escuela Politécnica Nacional

Página 1 de 37