Comunidad

El jueves 15 de mayo de 2025, un grupo de técnicos del Instituto Geofísico de la Escuela Politécnica Nacional (IG-EPN) realizó una expedición al interior del cráter del volcán Guagua Pichincha para medir la composición de los gases que emanan los campos fumarólicos.

Muestreo de los gases fumarólicos del Cráter del Guagua Pichincha
Figura 1.-Base del cráter del Guagua Pichincha, la mañana del 15 de mayo de 2025. M. Almeida (IG-EPN).


Los técnicos ingresaron al cráter en horas de la madrugada y llegaron hasta el fondo alrededor de las 10 de la mañana para realizar las actividades de vigilancia. Durante su permanencia en el interior del cráter recolectaron muestras de gas mediante diferentes técnicas de muestreo directo. Adicionalmente, realizaron mediciones de temperatura mediante el uso de termocuplas y cámara térmica.

Muestreo de los gases fumarólicos del Cráter del Guagua Pichincha
Figura 2.- Muestreo directo de fumarolas con el método de la botella de Giggenbach. Fotos: M. Almeida, F. Vásconez (IG-EPN).


También se realizaron mediciones MultiGAS para obtener las concentraciones ambientales y las razones entre las especies gaseosas emitidas por el volcán. Ya en horas de la tarde, los técnicos emprendieron el camino de regreso hacia la sede del Instituto Geofísico en Quito.

Muestreo de los gases fumarólicos del Cráter del Guagua Pichincha
Figura 3.- Técnicos del IG-EPN realizan mediciones de temperatura de manera remota usando cámara térmica y realizan mediciones de gas en la base del cráter con instrumentos MultiGAS. Fotos: D. Sierra (IG-EPN).


Las muestras de gas recolectadas serán analizadas en laboratorios de los colaboradores del IG-EPN en Europa y los datos instrumentales están siendo procesados por los técnicos para tratar de entender lo que sucede al interior del volcán. El Instituto Geofísico recuerda a la población que el acceso para actividades recreativas al interior del cráter se encuentra restringido, debido a los múltiples peligros que supone el ingreso de personas al cráter de un volcán catalogado como activo, tal como lo describe la señalética colocada en la entrada del Refugio.

Muestreo de los gases fumarólicos del Cráter del Guagua Pichincha
Figura 4.- Señalética de prohibición de entrada al cráter del Guagua Pichincha, realizada por sugerencia del Geofísico y la SGR. Foto: D. Sierra (IG-EPN).


Recientemente, se cumplieron 30 años del terrible suceso en el que dos vulcanólogos del Instituto Geofísico perdieron la vida en éste mismo volcán, debido a una explosión freática ocurrida la mañana del 12 de marzo de 1993. Éste es solo un recordatorio de los riesgos inherentes de ingresar al cráter de un volcán activo, de los cuales incluso los entes científicos no se encuentran exentos. Para mayor información visita el siguiente enlace: https://www.igepn.edu.ec/interactuamos-con-usted/2033-30-anos-del-fallecimiento-de-dos-tecnicos-del-ig-epn-en-el-crater-del-guagua-pichincha-los-peligros-de-ingresar-a-un-crater-volcanico-activo.

El volcán Guagua Pichincha presenta, al momento, una Actividad Superficial catalogada como Baja sin cambios y Actividad Interna Baja sin cambio. El Instituto Geofísico mantiene la vigilancia 24/7 de éste y los demás volcanes del arco volcánico ecuatoriano e informará en caso de presentarse novedades.

D. Sierra, F. Vásconez, M. Almeida.
Instituto Geofísico
Escuela Politécnica Nacional

Un equipo de técnicos del área de Vulcanología del Instituto Geofísico de la Escuela Politécnica Nacional (IG-EPN) realizó una campaña de mediciones de CO2 difuso (dióxido de carbono) y muestreo de aguas en la Laguna de Cuicocha (Fig. 1) entre el 23 y 24 de abril del 2025.

Esta campaña se realizó gracias al apoyo logístico del GAD Municipal de Santa Ana de Cotacachi y la Empresa Pública de Energía Renovable y Turismo, Cotacachi E.P. quien prestó las facilidades para el transporte acuático de los funcionarios.

Campaña de medición de CO2 en la laguna de Cuicocha
Figura 1.- Medición de CO2 difuso con el método de la campana de acumulación. Foto: M. Almeida/ IG-EPN.


La ejecución de esta campaña es parte del Proyecto de Investigación (PIGR 22-02) correspondiente al Estudio Multidisciplinario de Lagos Cratéricos del Ecuador, un proyecto financiado por el Vicerrectorado de Investigación de la EPN y el Proyecto ECLAIR financiado por el Instituto Francés para el desarrollo (IRD). Las mediciones de CO2 difuso en Cuicocha se realizan mediante el método de la “campana de acumulación” (Fig. 2), donde una campana de aluminio atada a un dispositivo de flotación recoge el gas volcánico emitido a través del agua, y lo conduce a un espectrómetro portátil que analiza su concentración. Las series de concentración vs. tiempo permiten determinar el flujo de gas en cada punto.

Campaña de medición de CO2 en la laguna de Cuicocha
Figura 2.- Medición de flujo de CO2 y temperatura del agua. Fotos: M. Almeida, D. Sierra/ IG-EPN.


Durante la campaña de abril de 2025 se llevaron a cabo un total de 101 mediciones distribuidas en una malla regular sobre la superficie de la laguna (Fig. 3). Al momento de la emisión de esta publicación, los datos están siendo procesados para luego generar el informe correspondiente.

Campaña de medición de CO2 en la laguna de Cuicocha
Figura 3.- Puntos de medición de flujo y temperatura realizados durante la campaña de abril de 2025. M. Almeida, D. Sierra/IG-EPN.


Los trabajos de vigilancia también comprenden el muestreo de agua de la laguna en la zona de burbujeo localizada al noroccidente del Islote Yerovi. La muestra será procesada en el Centro de Investigación y Control Ambiental (CICAM) de la EPN, en donde se realizará el análisis químico para la determinación de elementos mayoritarios.

Campaña de medición de CO2 en la laguna de Cuicocha
Figura 4.- Técnicos del IG-EPN revisan depósitos eruptivos del Complejo Volcánico Cotacachi-Cuicocha en la comunidad de Moraspungo, a la derecha se observa un ejemplo de lapilli acrecionario, típico de erupciones explosivas en ambientes acuosos. Fotos: D. Sierra/ IG-EPN.


El proyecto PIGR 22-02 no solo incluye la vigilancia e investigación de las emisiones gaseosas en la laguna de Cuicocha, sino que también incluye la realización de nuevos estudios geológicos (Fig. 4) que permitirán un mejor entendimiento sobre la evolución del Complejo Volcánico Cotacachi Cuicocha y su actividad eruptiva más reciente.


D. Sierra, S. Hidalgo, M. Almeida
Instituto Geofísico
Escuela Politécnica Nacional

El Instituto Geofísico de la Escuela Politécnica Nacional, trabaja de en coordinación con otros entes nacionales e internacionales en proyectos que contribuyan a la reducción de los riesgos, de la población que se encuentra expuesta a amenazas sísmicas y volcánicas.

Colaboración interinstitucional en el proyecto “Fortalecimiento del conocimiento volcánico en el Ecuador para disminuir el riesgo de desastres en la población”
Figura 1.- Volcán Cotopaxi con emisión de gases el 21/09/2025 Foto: B. Bernard (IG-EPN).


En esta ocasión, el Instituto Geofísico ha venido colaborando desde finales de marzo de 2025 con la Dirección de Fortalecimiento y Desarrollo de Capacidades en Gestión de Riesgos de SGR, en el proyecto “Fortalecimiento del conocimiento volcánico en el Ecuador para disminuir el riesgo de desastres en la población”. Este proyecto intenta comunicar de manera asertiva y concientizar a la población sobre las potenciales amenazas del Volcán Cotopaxi.

Colaboración interinstitucional en el proyecto “Fortalecimiento del conocimiento volcánico en el Ecuador para disminuir el riesgo de desastres en la población”
Figura 2.- Técnicos del IG-EPN se reúnen con técnicos del Parque Nacional Cotopaxi y de la coordinación Zonal 3 de la SGR para definir potenciales lugares para la instalación de los tótems (Fotos: D. Bustos/SGR-CZ3, D. Sierra/IG-EPN).


El proyecto contempla la implementación de tótems informativos sobre el volcán Cotopaxi, mostrando sus características, su historia y su actividad. Los contenidos, así como las posibles localizaciones han sido propuestas por el geofísico a la SNGR, para su consideración e implementación.

Colaboración interinstitucional en el proyecto “Fortalecimiento del conocimiento volcánico en el Ecuador para disminuir el riesgo de desastres en la población”
Figura 3.- Técnicos del IG-EPN y SGR se reúnen con técnicos de la UGR de Latacunga para analizar posibles locaciones para la instalación de los tótems (Fotos: M. Córdova, D. Sierra/IG-EPN).


Se prevé la instalación de las menos 3 galerías de 6 tótems cada una en el Parque Nacional Cotopaxi, en el Centro de Latacunga, y en el Centro de Salcedo, por considerarse zonas altamente sensibles. El objetivo es fortalecer los conocimientos de las comunidades de la provincia de Cotopaxi para prevenir y responder ante una posible erupción del volcán Cotopaxi.

Colaboración interinstitucional en el proyecto “Fortalecimiento del conocimiento volcánico en el Ecuador para disminuir el riesgo de desastres en la población”
Figura 4.- Técnicos visitan el nuevo boulevard que se construye en la esquina de la Av. Eloy Alfaro y 5 de Junio en Latacunga, para analizar la posibilidad de instalar los tótems en esta zona. Foto: D. Sierra /IG-EPN.


Colaboración interinstitucional en el proyecto “Fortalecimiento del conocimiento volcánico en el Ecuador para disminuir el riesgo de desastres en la población”
Figura 5.-Técnicos del IG-EPN y SGR se reúnen con técnicos de la UGR de Salcedo para analizar posibles locaciones para la instalación de los tótems en el Parque de la Familia (Fotos: D. Sierra, M. Córdova /IG-EPN).


Pero no solo eso, los tótems además de informativos, pretenden tener un buen aspecto estético y mostrar bellas fotografías del Cotopaxi, ayudando a mejorar el ornato de las zonas y colaborando a fomentar el turismo.


D. Sierra, M. Córdova.
Instituto Geofísico
Escuela Politécnica Nacional

Del 22 al 25 de abril de 2025, técnicos del Instituto Geofísico de la Escuela Politécnica Nacional (IG-EPN) realizaron la recolección de muestras de ceniza del proceso eruptivo del volcán Sangay, así como el mantenimiento de la red de cenizómetros ubicados en las provincias de Morona Santiago y Chimborazo. Los resultados de la misión revelan una caída de ceniza muy leve a leve en la provincia de Chimborazo. Las comunidades donde cayó más ceniza se ubican en la parroquia Cebadas, cantón Guamote.

Actualmente, el volcán Sangay, ubicado en la provincia de Morona Santiago, presenta una actividad superficial catalogada como de nivel alto con tendencia sin cambios.}


Trabajo de campo

Durante la salida de campo, los técnicos del IG-EPN visitaron 31 sitios para realizar el mantenimiento de los cenizómetros y el muestreo de la caída de ceniza asociada a las emisiones ocurridas entre el entre el 11 de febrero y el 25 de abril de 2025 (Figura 1). Del mismo modo, los Observadores Volcánicos del cantón Guamote, en las comunidades al occidente del volcán, también realizaron el mantenimiento de sus cenizómetros.

Recolección de ceniza y mantenimiento de la red de cenizómetros del volcán Sangay
Figura 1. Mantenimiento de la red de cenizómetros del volcán Sangay en las provincias de Morona Santiago y Chimborazo (Fotos: A. Vásconez y E. Telenchana / IG-EPN).


En el periodo transcurrido entre la última misión de recolección de ceniza en febrero y la más reciente en abril de 2025, el Centro de Alertas de Ceniza Volcánica de Washington (Washington VAAC) ha reportado 68 nubes de ceniza, con alturas de hasta 4000 metros sobre el nivel de cráter, y alcances de hasta 120 km de distancia desde el volcán, con una dirección preferente entre suroccidente y noroccidente (Figura 2). Además, para el periodo comprendido entre febrero y abril 2025 se tuvo reportes de caída de ceniza en 4 ocasiones en varias localidades de la parroquia Cebadas, como se indica en la Figura 2.

Recolección de ceniza y mantenimiento de la red de cenizómetros del volcán Sangay
Figura 2. Mapa del alcance de las nubes eruptivas y de los reportes de caída de ceniza (figuras negras) registradas entre el 11 de febrero y el 25 de abril de 2025.


Luego de secar y pesar las muestras de ceniza recolectadas durante la campaña de campo, se obtuvieron valores de carga (gramos por metro cuadrado) indicando la cantidad de ceniza que cayó en cada localidad entre el 11 de febrero y el 25 de abril de 2025 (Figura 3). Según la carga, la caída de ceniza es clasificada como caída fuerte (más de 1000 g/m2), moderada (100 – 1000 g/m2), leve (10 – 100 g/m2) y muy leve (0 – 10 g/m2). Las comunidades con mayor caída de ceniza fueron Rayoloma, Retén Ichubamba y Guarguallá Chico, parroquia de Cebadas. Los resultados para cada localidad se presentan a continuación:
1. Caída leve: Rayoloma (65.0 g/m2), Retén (33.2 g/m2), Guarguallá Chico (30.4 g/m2), Pancún (29.0 g/m2), San Nicolás (25.3 g/m2), San Antonio (18.7 g/m2), Colta GAD (17.3 g/m2), Cashapamba (16.8 g/m2), Atapo Santa Cruz (14.0 g/m2), Cebadas 02 (12.6 g/m2), Cebadas 01 (11.2 g/m2), Chauzán 01 (10.8 g/m2), Palmira Dávalos (10.8 g/m2).
2. Caída muy leve: Cuatro Esquinas (9.8 g/m2), Picavos (9.8 g/m2), Palmira GAD (8.4 g/m2), Flores GAD (7.0 g/m2). Pallatanga GAD (6.5 g/m2), Punto cero Atillo (4.2 g/m2), Chaguarpata (4.2 g/m2), Vía Oriente Cebadas (2.3 g/m2), Piscinas Atillo (2.3 g/m2), Juan de Velasco GAD (2.3 g/m2), Atillo Comunidad (1.9 g/m2), Cumandá GAD (1.4 g/m2), Huigra GAD (0.9 g/m2), Luz de América (0.5 g/m2), Hostería Farallón (0.5 g/m2).

Recolección de ceniza y mantenimiento de la red de cenizómetros del volcán Sangay
Figura 3. Ubicación de los cenizómetros del Instituto Geofísico (IG) y de los Observadores Volcánicos (OV) con la carga de ceniza acumulada entre el 11 de febrero y el 25 de abril de 2025 (Fuente: Google Earth Pro).


Por otro lado, la tarde del 21 de abril de 2025 se realizó un sobrevuelo con dron a la confluencia de los ríos Volcán, que desciende desde el Sangay, y el río Upano (Figura 4). A través de las imágenes captadas con el dron, se buscaba identificar cambios morfológicos en esta zona de confluencia y en la laguna sobre el río Upano formada desde finales de 2020.

Al momento de la visita, no se observó ningún tipo de represamiento y el cauce de los ríos fluía con normalidad. La laguna presentaba un nivel más bajo del agua, dejando al descubierto bancos y playas de arena. Anteriormente, el material volcánico expulsado por la actividad eruptiva del Sangay ha sido transportado por el río Volcán, represando en algunas ocasiones el cauce natural del río Upano. Durante episodios de fuertes lluvias en la zona, estas han removilizado el material volcánico acumulado, generando el descenso de flujos de lodo o lahares secundarios, que en el pasado han llegado a afectar el puente de acceso a la ciudad de Macas.

Recolección de ceniza y mantenimiento de la red de cenizómetros del volcán Sangay
Figura 4. Arriba: Imágenes captadas durante el sobrevuelo con dron de la confluencia de los ríos Volcán y Upano, y de la laguna formada sobre el río Upano. Abajo: Ortofoto creada a partir de las imágenes captadas con el dron (Foto: E. Telenchana/IG-EPN).


Finalmente, el 24 de abril se realizó cambios en la configuración de la cámara de vigilancia fija ubicada en el sector de Picavos-Guarguallá, aumentando el zoom y mejorando el enfoque para tener una mejor visión del volcán Sangay (Figura 5). Así también se revisó el funcionamiento y los datos de la cámara espía ubicada en el mismo sitio.

Recolección de ceniza y mantenimiento de la red de cenizómetros del volcán Sangay
Figura 5. Revisión de la cámara de vigilancia fija de Picavos-Guarguallá (Fotos: A. Vásconez/IG-EPN y J. Ventura/UNAM).


Como citar este reporte/How to cite this report: Telenchana E., Vásconez A., Ventura J., (2025) RECOLECCIÓN DE CENIZA Y MANTENIMIENTO DE LA RED DE CENIZÓMETROS DEL VOLCÁN SANGAY, PROVINCIA DE CHIMBORAZO del 25/04/2025.


E. Telenchana, A. Vásconez, J. Ventura.
Instituto Geofísico
Escuela Politécnica Nacional

En el marco del plan de mejora de la infraestructura de comunicaciones de las repetidoras que conforman la red de monitoreo del volcán El Reventador, un equipo técnico del Instituto Geofísico de la Escuela Politécnica Nacional (IG-EPN) llevó a cabo trabajos de optimización en la estación repetidora RVR, ubicada en las faldas del volcán El Reventador, en la provincia de Sucumbíos.

Plan de mejoramiento de infraestructura de repetidoras en el volcán El Reventador
Figura 1.- Personal técnico del IG-EPN durante la instalación del nuevo rack de comunicaciones en la estación repetidora RVR – volcán El Reventador. Se observa la base de hormigón y el rack instalado. Fotos: IG-EPN.


La repetidora RVR cumple un papel fundamental en la administración del tráfico de datos provenientes de diversas estaciones de monitoreo del volcán El Reventador, tales como: estaciones sísmicas, de lahares, gases y cámaras. Estos datos son enviados a la repetidora Reventador Petroecuador, desde donde se enrutan a través de la red de microondas hacia la repetidora Atacazo Petroecuador, y finalmente son transmitidos en tiempo real a la sede central del IG-EPN, ubicada en la Escuela Politécnica Nacional en Quito.

Plan de mejoramiento de infraestructura de repetidoras en el volcán El Reventador
Figura 2. Técnicos del IG-EPN realizando los trabajos de migración de equipos, adecuación y pruebas en la repetidora RVR. Fotos: IG-EPN.


Como parte del plan de mejora, se instaló un nuevo rack que alberga los diferentes equipos de telecomunicaciones y el sistema de suministro de energía fotovoltaica. Esta estructura reemplazó las antiguas cajas metálicas, las cuales no ofrecían el espacio adecuado ni la protección necesaria frente a las fuertes condiciones climáticas del entorno. Con esta intervención se garantiza una mayor eficiencia, seguridad, orden y funcionalidad en los sistemas de transmisión y monitoreo.

Plan de mejoramiento de infraestructura de repetidoras en el volcán El Reventador
Figura 3. Vista frontal de la estación repetidora RVR – volcán El Reventador. Las mejoras aseguran la operatividad del monitoreo y la protección de los equipos frente a condiciones ambientales adversas. Fotos: IG-EPN.


REHABILITACIÓN DE LA ESTACIÓN MULTIPARAMÉTRICA AZUELA

Paralelamente, un segundo equipo de técnicos realizó la rehabilitación de la estación multiparamétrica Azuela, ubicada en el flanco noreste del volcán El Reventador. Para ejecutar esta intervención, fue necesario realizar una caminata de aproximadamente cuatro horas y permanecer en el sitio durante tres días, estableciendo un campamento.

Esta estación multiparamétrica cuenta con un sensor sísmico, un sensor de infrasonido, un medidor DOAS (detección de gases) y una estación AFM (detección de lahares). Todos los datos generados se transmiten en tiempo real por medio de la repetidora RVR, para que puedan llegar a Quito.

Plan de mejoramiento de infraestructura de repetidoras en el volcán El Reventador
Figura 4.- Grupo de técnicos en camino hacia la estación Azuela. Estación Azuela rehabilitada y operativa. Fotos: IG-EPN.


El Instituto Geofísico de la Escuela Politécnica Nacional (IG-EPN) expresa su más sincero agradecimiento al Sr. Joselo Amaguay de la Hostería El Reventador y a sus trabajadores, ya que sin su apoyo y colaboración no sería posible realizar los trabajos de mantenimiento de las estaciones. Su compromiso y disposición han permitido alcanzar los objetivos planteados y fortalecer el monitoreo del volcán El Reventador.


Autores: C. Cisneros, R. Toapanta, C. Macías, I. Tapa, D. García, L. Vélez
Correctores de Estilo: G. Pino, D. Sierra
Instituto Geofísico
Escuela Politécnica Nacional

Como parte de las tareas de vigilancia volcánica que el Instituto Geofísico de la Escuela Politécnica Nacional (IG-EPN) lleva a cabo en los principales volcanes del Ecuador, un grupo de técnicos del Área de Vulcanología e Instrumentación realizó el mantenimiento y optimización de las cámaras de rango ultravioleta instaladas en los volcanes Cotopaxi (Fig. 1-A) y El Reventador (Fig. 1-B), en colaboración con el Dr. Thomas Wilkes, científico de la Universidad de Sheffield, Reino Unido. Las jornadas de trabajo se realizaron entre el 09 y 15 de abril del año en curso.

Mantenimiento y optimización de las cámaras de rango ultravioleta (UV) para vigilancia de emisiones gaseosas en el volcán Cotopaxi y El Reventador
Figura 1.- A) Volcán Cotopaxi visto desde el norte. B) Volcán El Reventador en erupción visto desde el suroriente. Fotos: M. Almeida / IG-EPN.


Volcanes como Cotopaxi y El Reventador, poseen diferentes configuraciones de vigilancia ((Fig. 2-A y B) en función de su acceso y niveles de actividad; cada volcán utiliza diferentes sensores para estudiar su comportamiento a nivel interno y superficial.

El Cotopaxi es uno de los volcanes que mayor riesgo representa en nuestro país, ya que tiene a su alrededor cientos de miles de habitantes distribuidos en varias provincias, que podrían ser impactados por sus erupciones. Las últimas erupciones de Cotopaxi fueron en 2015 y en 2022-23, ambas catalogadas como pequeñas.

Por otro lado, en el año 2002, el volcán El Reventador tuvo una de las erupciones volcánicas más grandes registradas en Ecuador en los últimos 100 años, causando graves daños a infraestructura de importancia nacional (por ejemplo: oleoducto, sistemas de agua potable y energía eléctrica, y el aeropuerto de Quito). Desde aquella fecha, el volcán El Reventador se ha mantenido en constante actividad eruptiva. En función de lo antes mencionado, es importante mejorar, y desarrollar mejores técnicas de vigilancia de estos dos volcanes activos.

Mantenimiento y optimización de las cámaras de rango ultravioleta (UV) para vigilancia de emisiones gaseosas en el volcán Cotopaxi y El Reventador
Figura 2.- Estaciones multiparamétricas del Instituto Geofísico: A) Estación VC1, ubicada en el flanco oriental del Volcán Cotopaxi, B) Estación RVR, ubicada en el flanco suroriental del Volcán El Reventador. Fotos: S. Hidalgo / IG-EPN.


A nivel superficial, las cámaras de rango ultravioleta permiten observar la presencia de gas magmático: dióxido de azufre (SO2, Fig. 3-A y B), con una coloración oscura. A pesar de que este gas es sólo uno de todos los gases liberados por el magma, es uno de los más importantes ya que se ha observado una relación entre el incremento de la cantidad de este gas, respecto al incremento de los niveles de actividad volcánica en superficie: antes, durante y después de una erupción. Tener varias formas de cuantificar la presencia del SO2, permite cotejar toda la información disponible y mejorar las capacidades de evaluación del peligro volcánico, a pesar su inherente complejidad.

Mantenimiento y optimización de las cámaras de rango ultravioleta (UV) para vigilancia de emisiones gaseosas en el volcán Cotopaxi y El Reventador
Figura 3.- Imágenes capturadas mediante una cámara de rango UV: A) Desgasificación vista desde el flanco oriental del Volcán Cotopaxi, B) Desgasificación observada desde el campamento Azuela, ubicado al nororiente del Volcán El Reventador. Fotos cortesía: T. Wilkes / Universidad Sheffield.


Finalmente, al momento de la emisión de este informativo los niveles de actividad para los volcanes son:
- Cotopaxi: Superficial e interna, baja con tendencia sin cambio.
- El Reventador: Superficial alta con tendencia ascendente, e interna moderada con tendencia sin cambio.

El Instituto Geofísico mantiene la vigilancia permanente de los volcanes a nivel nacional, e informará ante cambios relevantes.


M. Almeida, S. Hidalgo, D. García, F. Vásconez
Instituto Geofísico
Escuela Politécnica Nacional

Página 1 de 68