1. INTRODUCCION
El volcán Cuicocha está ubicado en la parte Norte de la Cordillera Occidental del Ecuador, a 55 km al Norte de Quito, 13 km al Nor-Occidente de Otavalo (39.000 habitantes) y a tan sólo 10 km al Occidente de Cotacachi (9.000 habitantes). Hay 5 estaciones sísmicas instaladas en y alrededor de los volcanes Cuicocha y Cotacachi, más de una estación de CO2 y dos estaciones de GPS (Figura No.1).
La laguna de Cuicocha es en realidad una caldera volcánica activa rellenada en la actualidad por el agua proveniente de las precipitaciones, y anteriormente por el deshielo de los glaciares que cubrían el Volcán Cotacachi y por la percolación de agua de los acuíferos superficiales. La manera más correcta de llamar a Cuicocha desde el punto de vista volcánico es que se trata de una laguna cratérica activa o simplemente se debe hablar del Volcán Cuicocha. Las dos islas que se presentan en el centro de la laguna constituyen en realidad cuatro domos volcánicos, el mayor de los cuales se eleva unos 300 m sobre el fondo del cráter, actualmente sumergido.
2. SISMICIDAD
El complejo volcánico Cotacachi-Cuicocha está experimentando recientemente un pequeño aumento en su actividad sísmica, con un máximo de 52 eventos durante el mes de Noviembre del 2015. En Enero del 2016 se mantiene esta actividad con un total de 34 eventos (Figura No. 3), todos de tipo Volcano-Tectonico (VT) relacionados con fracturamiento de rocas. En la figura 2, se puede observar la actividad en el contexto histórico desde el comienzo del año 2011. En la figura 3, se muestran los eventos totales por mes.
En la figura 4 se muestra la actividad diaria del mes de Enero, no se observa una importante cantidad de eventos en ningún día en específico, es decir hay una distribución de eventos a lo largo del mes.
3. EVENTOS ESPECIALES
Durante este mes se registró un evento considerado como anormalmente grande en magnitud. Los eventos son considerados anormalmente grandes cuando tienen una magnitud superior a (x¯+2s) (donde ' x¯' es el promedio y 's' es la desviación estándar). Este evento fue registrado el 29 de Enero a las 10:33 (UT) (Figura No. 5). Tiene una magnitud de 2.67 (2.377s más que el promedio de 1.705, donde la desviación estándar es 0.406).
Un otro evento grande en magnitud se registró el 31 de Enero a las 05:57 (UT) (Figura No. 6), con una magnitud de 2.41 (1.736s más que el promedio). Ambos eventos son de tipo VT.
Las figuras 5 y 6 muestran estos ejemplos de eventos más grandes en el complejo volcánico Cotacachi-Cuicocha con las formas de ondas y ya sea el espectrograma o el espectro de potencia. Ambos tipos de visualizaciones muestran las frecuencias dominantes en las señales sísmicas.
4. LOCALIZACIONES
La figura 7 (y Tabla No. 1) muestra las ubicaciones de los eventos en el complejo volcánico Cotacachi-Cuicocha, éstas fueron calculadas con estaciones de la red local del volcán y la Red Nacional de Sismógrafos.
Las localizaciones de los eventos en el volcán Cuicocha están a menos de 3 kilómetros de distancia horizontal desde el centro de la caldera y también a mayores distancias hacia el nororiente. Esta orientación de la sismicidad (nororiente-suroccidente) es la misma que tienen las fallas tectónicas en en la zona (NE-SO) (Fiorini & Tibaldi, 2012).
5. OTRAS OBSERVACIONES
Personal del Instituto Geofísico realizó un sobrevuelo sobre los volcanes Sumaco, Reventador, Soche e Imbabura el 28 de enero. Aquí se tuvo la oportunidad de realizar observaciones del Complejo Volcánico Cotacachi-Cuicocha y de obtener imágenes térmicas del mismo. Usando una avioneta CESSNA-206, ellos emprendieron una vista de 360° de cada volcán en la ruta. El Complejo Volcánico Cotacachi-Cuicocha fue el último objetivo en la ruta.
El informe de este vuelo reportó lo siguiente: "Actualmente estos no presentan evidencias de actividad superficial (Figura 8). Se obtuvieron imágenes térmicas principalmente de la caldera Cuicocha, la que no muestra anomalías." - Marco Almeida, Johnny García, Patricio Ramón, Silvia Vallejo - 28 Enero 2016
6. CONCLUSIONES
Recientemente (desde Noviembre a Enero) hay un poco más de actividad que en los meses pasados pero todavía la actividad sísmica es considerada como baja. Los eventos que se registraron son de tipo volcánico- tectónico (VT).
El Instituto Geofísico continúa con el monitoreo de este volcán y cualquier cambio en su actividad será informado.
MP/XP
Instituto Geofísico
Escuela Politécnica Nacional
La población de la comunidad de Columbe nos reportó la emanación de gases en el sector Miraflores – San José (cercanías del río Gaushi), en la provincia de Chimborazo, el lunes 25 de enero del presente año. Según los pobladores estos gases se observaron al menos quince días antes dicho reporte.
Varias hipótesis se habían emitido con respecto al origen de estos gases, incluyendo un posible origen volcánico. Con el fin de obtener datos de la zona y determinar la naturaleza de los gases una comisión de técnicos del Instituto Geofísico de la Escuela Politécnica Nacional con la coordinación de la SGR Zona 3 realizó trabajos de campo en la zona (Figura 2).
CONTEXTO GEOLÓGICO DE LA ZONA
En esta zona se han reconocido algunas fallas tectónicas recientes, la más importante, la Falla Pallatanga continua hacia el noreste y pasa al norte de Colta. Esta falla pertenece al sistema mayor dextral del Ecuador.
Las rocas sedimentarias de la cuenca Alausí-Riobamba discordantemente rocas del basamento se superponen de la unidad Pallatanga y una potente secuencia de rocas volcánicas del Oligoceno-Mioceno, que se puede distinguir en las siguientes formaciones:
Facies volcánicas de la parte más inferior de la Formación Huigra (Eguez et al., 1992); que sugiere se correlacionan con el grupo de Saraguro.
Parte superior de la Formación Alausí, cuyas edades radiométricas que se correlacionan con los volcano-clásticos del Mioceno tardío, volcánicos Turi y formación Tarqui (Hungerbühler et al., 2002) en el ante-arco del sur ecuatoriano.
Aunque no se observó el contacto físico, los lacustres de la formación Sicalpa se asume que recubrió inconformemente a los volcánicos Alausí (Lavenu et al., 1992).
Los potentes abanicos aluviales y conglomerados fluviales de la Formación Palmira recubren la Formación Sicalpa del Plioceno con una discordancia angular (Eguez et al., 1992; Lavenu et al, 1996). La presencia de estos sedimentos gruesos, que provienen del este, indica un cambio tectónico y / o climático durante el Plioceno tardío (Lavenu et al., 1996). Estas facies gruesas pueden haber sido depositadas durante la deformación sinsedimentaria en la Formación Latacunga contigua, y un régimen tectónico compresivo puede haber prevalecido durante la deposición de la Formación Palmira.
1. Medidas de las emanaciones de gases
A través de la observación se pudo constatar la emisión de gas a través de las grietas. Este gas tiene un color grisáceo y tiene un olor similar al que despide la madera o carbón quemado. No se percibió olor a azufre en la zona.
Se utilizó un instrumento capaz de detectar múltiples especies “Multigas” para detectar las concentraciones de gases emanados por las grietas.
Se realizaron medidas del gas usando el instrumento “Multigas” y se detectaron concentraciones de CO2 de 1000 a 2500 ppm, siendo la concentración normal de CO2 en la atmosfera de 400 a 450 ppm. Las altas concentraciones de CO2 medidas en la zona podrían estar asociadas a la combustión de suelos enriquecidos en materia orgánica o de las turbas encontradas en la zona. No se midieron gases de origen volcánico como el SO2.
Además se recolectó una muestra de agua para ser analizada, los resultados de dicho análisis se darán a conocer cuando sean entregados por el laboratorio.
2. Medición de Temperatura
Utilizando dos métodos diferentes: se procedió a medir los valores de temperatura de los gases emanados por las grietas.
- Termocupla: Permite medidas de temperatura en situ a través de una barrilla conductora que fue enterrada en tres diferentes puntos del lugar. Los Puntos 1 y 3 corresponden a grietas donde la salida de gas era evidente, el punto 2 corresponde solamente a un horizonte de suelo sin emisiones de gas evidente.
Las temperaturas medidas fueron:
- Cámara térmica FLIR: La Temperatura máxima aparente (TMA) medida con la cámara térmica (Figura 8) alcanza el valor de 434°C en la zona de combustión.
Valores de temperatura menores se encontraron en la superficie de las paredes de esta grieta, las cuales por efecto de conducción alcanzan temperaturas del orden de 88±4 °C y menores, a medida que se alejan del interior de las grietas
3. Trabajos Geológicos en el talud y la zona
Se realizó un reconocimiento geológico del afloramiento (Figura 9). Los depósitos encontrados en el afloramiento corresponden a suelos y material de ambiente lacustre, es remarcable la presencia de una capa de turba (1.40 m de espesor aproximadamente).
4. Medición de parámetros Físico-Químicos en aguas
Según el testimonio de uno de los moradores del sector, varias truchas de un criadero aledaño habían muerto inexplicablemente el 24 de enero. Para descartar vinculación entre este fenómeno y la emanación de gases desde la grieta se procedió a tomar medidas de pH, conductividad y temperatura en el criadero.
El pH que se obtuvo de la medición está considerado dentro del rango normal, el agua puede albergar peces de agua dulce con pH entre 6-8. La temperatura se mantiene en un rango adecuado de manera que no significa una amenaza para la vida de los peces. Se requiere el resultado de los análisis de laboratorio para verificar si algún compuesto tóxico se encuentra presente.
5. Testimonios de los Moradores
Como parte de la investigación del fenómeno de salida de gas desde la grieta se entrevistó a los moradores de la zona, al párroco de Columbe, miembros del cuerpo de Bomberos de Colta, al dueño del criadero de truchas y del terreno.
Los testimonios de estas personas son muy importantes pues permitirá hacer una reconstrucción de los hechos y tener una mejor idea de que puede estar ocurriendo en la zona. A continuación se recogen algunos de los hechos ocurridos en Columbe:
- Hace dos semanas aproximadamente, el dueño del terreno prendió fuego al terreno con la finalidad de eliminar la maleza existente en el mismo.
- El día domingo 24 de enero de 2016, algunas de las truchas del criadero amanecieron muertas.
- El párroco de Columbe asevera que hace aproximadamente un mes se podían observar pequeñas emisiones de vapor debajo de un árbol ubicado en la zona, mismo que se quemó y actualmente se encuentra caído.
- El Párroco asegura que se observó incandescencia en la zona a partir del lunes 25 de enero del 2016.
- El día martes 26 de enero los bomberos de Colta bombearon agua desde el río con el objetivo de sofocar las llamas, además procedieron a escavar parte del talud causando inestabilidad y provocando el deslizamiento de una parte del afloramiento.
6. Conclusiones
En base a todos los datos y trabajo de campo se pueden establecer que:
7. Recomendaciones
DS, PE, MC, ET, SH, BB, MA, JG, PR, MR
Instituto Geofísico
Escuela Politécnica Nacional
Actividad externa baja e interna moderada
Resumen
Durante las últimas semanas se ha observado una baja actividad externa en el volcán Cotopaxi, que está caracterizada principalmente por poca presencia de vapor en la cumbre, esporádicas columnas de gases y muy poca emisión de ceniza. Algunos parámetros de monitoreo (SO2, sismos tipo LP, tremor, ceniza) regresaron prácticamente a su nivel de base pre-eruptivo pero se siguen registrando sismos tipo VT's (~90 por día) y algunas explosiones internas indicando posiblemente la permanencia de una fuente de presión en el volcán. Al momento el escenario más probable es que la actividad superficial del volcán se mantenga a un nivel bajo. En este escenario se prevé que el volcán siga produciendo pequeñas emisiones de ceniza sin afectación a las poblaciones aledañas al volcán y lahares secundarios que se queden dentro de los límites del Parque Nacional Cotopaxi como hasta ahora. No se descarta una mayor actividad del volcán en las próximas semanas pero es el escenario menos probable. Al final del informe se detallan estos escenarios.
Observaciones visuales
Durante las últimas semanas, las condiciones de observación visual han sido variables pasando por días completamente nublados hasta días completamente despejados. La actividad superficial ha estado caracterizada principalemente por emisiones de baja energía de gas al nivel del cráter alcanzando en ocasiones hasta 800 m sobre el nivel del mismo (Fig. 1A y 1B). El 24 de enero a las 18h43 TU (Tiempo Universal) se produjo una emisión con contenido bajo a moderado de ceniza que alcanzó 700 m snc (Fig. 2A y 2B) dirigida por el viento hacia el Occidente. Esta emisión coincide con un sismo de tipo híbrido (Magnitud 2.3).
Sismicidad
Durante la última semana, la actividad sísmica del volcán Cotopaxi no ha mostrado mayor cambio respecto a las semanas anteriores. El volcán continúa presentando principalmente eventos Volcano-Tectónicos (VT) con un promedio de alrededor de 90 VT/día (Fig. 3) y pocas explosiones pequeñas. La mayoría de estos eventos se localizaron bajo el cráter entre 2 y 10 km de profundidad con magnitudes entre 0.5 y 2.5 (Fig. 4). El número de eventos de Largo Periodo (LP) se mantiene en su nivel de base desde mediados de octubre de 2015 (< 5 LP/día; Fig. 5) al igual que los episodios de tremor.
Deformación
Los resultados del inclinómetro de VC1 muestran un patrón de deformación casi plano desde finales de octubre para el eje radial y finales de noviembre para el eje tangencial. Sin embargo no se observa un regreso a los valores pre-eruptivos. Como consta en la Figura 6, no se observa una nueva deformación asociada a los VT's de las últimas semanas. Los demás instrumentos tampoco muestran una deformación del edificio volcánico.
Emisión del SO2
Las emisiones de SO2 se mantuvieron por debajo de 1000 ton/día en las últimas semanas (Fig. 7). Los valores obtenidos regresaron casi al nivel de base pre-eruptivo.
Caída de ceniza
Desde el 23 de noviembre de 2015 no se registraron caídas de ceniza significativas asociadas a la actividad del volcán. Las pequeñas emisiones de Enero probablemente no produjeron caídas de ceniza medibles en las proximidades del volcán.
Lahares
Desde el 28 de agosto de 2015 varios lahares secundarios se han producido en el volcán Cotopaxi. A diferencia de los lahares primarios que se originan por contacto del material volcánico incandescente con el hielo durante erupciones grandes, su origen se debe a intensas lluvias que caen en la parte alta del volcán y arrastran pendiente abajo la ceniza que se depositó en los flancos durante la fase eruptiva que empezó el 14 de Agosto de 2015. Esta mezcla inicial incorpora rocas y otro tipo de escombros al transportarse pendiente abajo, viajando hasta que la pendiente y su energía lo permitan. Algunos de estos lahares se han generado también debido a los deshielos que se han producido constantemente. El volumen esperado de los lahares secundarios producidos por las lluvias es mucho menor al esperado por las erupciones grandes del Cotopaxi. Hasta hoy se han registrado 39 lahares secundarios, la mayor parte de ellos han descendido por la quebrada Agualongo ubicada al occidente del volcán, y unos pocos por los flancos norte y nororiental. En general son lahares muy pequeños que no sobrepasan un caudal de 10 m³/s. Se detallan a continuación los lahares más caudalosos que se han registrado (Tabla 1).
Interpretación
Los datos de monitoreo obtenidos hasta el 28 de enero de 2016 indican que ciertos parámetros del monitoreo (SO2, LP's, tremor, ceniza) regresaron casi hasta el nivel de base pre-eruptivo. Todos estos parámetros están vinculados de alguna manera a la salida de gas. La deformación del edificio marca una pausa desde noviembre 2015 pero no ha regresado al nivel pre-eruptivo. Esto que indicaría que la intrusión magmática responsable de la actividad eruptiva entre Agosto y Noviembre 2015 permanece en el lugar de su último emplazamiento con un volumen considerable, el cual no ha disminuido de manera apreciable durante las semanas que duró la emisión de ceniza en este primer episodio de erupción. Adicionalmente los sismos de tipo VT's detectados de manera sostenida durante ya más de cuatro meses y las pequeñas explosiones registradas últimamente indicarían que sigue una fuente de presión al interior del volcán.
Una posible interpretación de este conjunto de resultados es que al momento la parte superior de la intrusión magmática se está transformando en un tapón poco permeable que no deja pasar los gases, los cuales se acumulan hasta producir una pequeña explosión interna. Los VT's podrían ser interpretados como pequeños movimientos de este tapón o pequeñas realimentaciones de magma cuyo volumen no altera el patrón de estabilidad que muestran los valores de deformación desde el fin de Noviembre. Al momento no hay evidencia de un cambio de comportamiento del Cotopaxi respecto a las últimas semanas pero no se puede descartar el inicio de un cambio de estos patrones de estabilidad actuales en plazos cortos. El IGEPN está muy atento de cualquier cambio en las condiciones presentadas por el volcán.
Escenarios
Al momento el volcán no presenta una actividad eruptiva significativa y en función de esto se propone tres escenarios organizados del más probable al menos probable:
Estos escenarios podrán ser cambiados de acuerdo a la evolución de la actividad del volcán.
BB-SH-EV-SH-SA-HY-MR
Instituto Geofísico
Escuela Politécnica Nacional
Durante los últimos días comuneros han observado una emanación de gases con incandescencia en las cercanías del cerro de Columbe, sector Miraflores – San José (cercanías del río Gaushi), en la provincia de Chimborazo. En este momento el Instituto Geofísico de la Escuela Politécnica Nacional envió dos grupos de técnicos al sitio para realizar varias mediciones e investigar la causa de este fenómeno.
Cabe aclarar que la zona donde se registra la salida de gases y la incandescencia está ubicada aproximadamente a 45 km del volcán Chimborazo, como se indica en el mapa adjunto.
Una vez que se tengan los datos de los equipos en campo, se publicará un informe especial en la brevedad posible sobre este fenómeno.
SA-GPM
Instituto Geofísico
Escuela Politécnica Nacional
Los técnicos del Instituto Geofísico Freddy Vásconez, Jorge Córdova, Hugo Ortiz y Carlos Macías realizaron una visita al volcán Reventador del 14 al 16 de enero para el mantenimiento e instalación de equipos de vigilancia volcánica.
Las labores que los técnicos realizaron comprenden las siguientes:
• Mantenimiento del arreglo del infrasonido y la estación sísmica sector LAV4.
• Mantenimiento de la repetidora Reventador-Petro
• Mantenimiento de la estación repetidora de Lumbaqui
• Mantenimiento del arreglo del infrasonido LAVA 9 y Azuela.
• Limpieza de paneles de la estación permanente REVN
• Instalación de la infraestructura para la estación de la cámara térmica en el borde norte de la caldera del volcán
Durante la jornada de trabajo del día 15 de enero del 2016 los técnicos observaron y documentaron varias explosiones, que tuvieron columnas de ceniza que alcanzaron entre 1.5 a 2 km de altura snc (figura 3). El 15 de enero, se observó un flujo piroclástico que descendió por el flanco norte y avanzó aproximadamente 500 m (Figura 4). Además se pudo identificar otros depósitos piroclásticos que descendieron durante las últimas 3 semanas (figura 5).
FV/HO/JC/MC/PE/PM
Instituto Geofísico
Escuela Politécnica Nacional
© 2025 Instituto Geofísico - EPN
Inicio | Escuela Politécnica Nacional | Correo Institucional
Ladrón de Guevara E11-253, Aptdo. 2759 Quito - Ecuador.
Teléfonos: (593-2)2225655 ; (593-2)2225627 Fax: (593-2)2567847