Comunidad

El miércoles 11 de junio de 2025, personal del Instituto Geofísico de la Escuela Politécnica Nacional (IG-EPN) llevó a cabo un sobrevuelo de monitoreo térmico, visual y de fluidos, alrededor del volcán Cotopaxi (Fig. 1). El sobrevuelo fue efectuado gracias al apoyo logístico de la compañía Mission Aviation Fellowship (MAF).

El sobrevuelo se llevó a cabo manteniendo distancias variables entre 2 y 5 km entre la aeronave y el volcán. Así mismo, la altura de vuelo para la toma de imágenes térmicas fue de entre 5900 y 7000 m de altura. Las condiciones climáticas fueron difíciles, con una temperatura ambiente promedio de -10°C, y humedad relativa variable entre 30 - 35 %.

Sobrevuelo de monitoreo del volcán Cotopaxi
Figura 1. Ruta del sobrevuelo de monitoreo efectuado en el volcán Cotopaxi.


Monitoreo Visual
Durante el sobrevuelo el volcán se presentó despejado, principalmente en la zona alta sobre la cota de los 4200 m.

La actividad superficial observada se caracterizó por una emisión débil de gas generada desde el cráter del volcán. Esta emisión alcanzó una altura máxima de 100 m sobre el cráter y tenía una dirección preferencial hacia el occidente (Fig. 2). Durante el tiempo de vuelo, no se evidenciaron nubes de ceniza. La actividad superficial observada es catalogada como baja, congruente con los datos del monitoreo permanente obtenidos mediante las cámaras fijas (por ejemplo: Cámara Sincholagua).

Sobrevuelo de monitoreo del volcán Cotopaxi
Figura 2. En primer plano se observa el volcán Cotopaxi con una débil emisión de gas. La pared de roca que se puede observar bajo la cumbre, corresponde al campo fumarólico de Yanasacha. (Foto: P. Ramón, IG-EPN).


Monitoreo Térmico
Las imágenes térmicas fueron obtenidas mediante el uso de una cámara portátil de rango infrarrojo (FLIR T1020). Estas imágenes corresponden a las anomalías termales asociadas a los campos fumarólicos ubicados alrededor del cráter. Todas las temperaturas máximas aparentes (TMA) obtenidas son consideradas como bajas, y no muestran cambios relevantes respecto a vuelos pasados.

Es importante tomar en cuenta que estas temperaturas presentan subestimaciones asociadas a las limitaciones propias del método. Estas limitaciones son provocadas por: condiciones meteorológicas, distancia entre el volcán y la aeronave, geometría del cuerpo observado, presencia de gases volcánicos, entre otros.

En tal virtud, los gases emitidos durante el sobrevuelo no permitieron observar el fondo del cráter del volcán.

Los valores de TMA obtenidos corresponden a: Campo fumarólico de Yanasacha, 16.9 °C, y Flanco oriental, 18.2 °C.

Adicionalmente, se identificaron pequeñas zonas rocosas dentro del glaciar que, bajo la incidencia de los rayos del sol se mostraban calientes. Sin embargo, estas zonas son ajenas a la actividad propia del volcán.

Sobrevuelo de monitoreo del volcán Cotopaxi
Figura 3. Imágenes infrarrojas. El color amarillo representa las zonas calientes detectadas en el volcán (ver escala de colores). Izquierda: vista del flanco nororiental del volcán Cotopaxi. En esta imagen se puede divisar el campo fumarólico de Yanasacha y parte de los campos fumarólicos orientales. Derecha: vista del flanco suroriental del volcán. Note las zonas calientes encerradas en los círculos blancos (Imagen: F. Naranjo, IG-EPN).


Medición de Gases Volcánicos
Las mediciones de gas se realizaron usando un equipo MultiGAS. Este equipo es capaz de medir concentraciones de 4 diferentes tipos de especies gaseosas (Agua: H2O, Dióxido de carbono: CO2, Dióxido de azufre: SO2 y Ácido sulfhídrico: H2S). Durante el sobrevuelo, se realizaron varios intentos de medición de la pluma de gas, sin embargo, dado que estas emisiones fueron débiles, no se registraron picos de ninguna de las especies gaseosas mencionadas anteriormente.

Esto es consistente con la tendencia actual de altura de las emisiones de gas, y los valores bajos de flujo detectados por la red DOAS permanente.


Conclusiones

La actividad del volcán es catalogada como: Superficial e Interna, Baja con tendencia sin cambio.


F. Naranjo, M. Almeida, S. Vallejo
Instituto Geofísico
Escuela Politécnica Nacional

El Ing. Marco Córdova, miembro del Área de Vulcanología del Instituto Geofísico de la Escuela Politécnica Nacional, participó en el Taller de Monitoreo Volcánico organizado por el Centro para el Estudio de Volcanes Activos (CSAV) de la Universidad de Hawái en conjunto con el Servicio Geológico de Estados Unidos (USGS).

El taller congrega a expertos de distintos observatorios volcánicos de varias regiones del mundo, con la finalidad de fortalecer las capacidades científicas en distintas técnicas en la vigilancia de amenazas volcánicas y gestión de los riegos asociados.

El Ing. Córdova realizó una presentación acerca de las amenazas volcánicas y las técnicas que el IG-EPN emplea para la vigilancia en el territorio ecuatoriano.

Participación del IG-EPN en el taller de monitoreo volcánico organizado por el Centro para el Estudio de Volcanes Activos (CSAV) en Hilo
Figura 1: Presentación del Ing. Marco Córdova por parte del IG-EPN (Fuente: CSAV)


Desde 1989, el CSAV organiza reuniones científicas en la Universidad de Hawái en Hilo, aprovechando las condiciones geológicas de la región, caracterizadas por una alta frecuencia de actividad volcánica.

Participación del IG-EPN en el taller de monitoreo volcánico organizado por el Centro para el Estudio de Volcanes Activos (CSAV) en Hilo
Figura 2: Participantes del CSAV durante un episodio de erupción del volcán Kilauea. (Fuente: CSAV)


Uno de los objetivos de estos encuentros es propiciar el intercambio de conocimientos y experiencias en torno a metodologías de monitoreo volcánico, interpretación de datos, generación de escenarios eruptivos y elaboración de mapas de peligros volcánicos.

Participación del IG-EPN en el taller de monitoreo volcánico organizado por el Centro para el Estudio de Volcanes Activos (CSAV) en Hilo
Figura 3: Visita técnica al Observatorio Vulcanológico de Hawái del Servicio Geológico de Estados Unidos (Fuente: CSAV)


El taller organizado por el CSAV cuenta con la participación de representantes de observatorios volcánicos de Argentina, Chile, Colombia, El Salvador, Fiji, Filipinas, Perú, Tonga; además de Ecuador.

Participación del IG-EPN en el taller de monitoreo volcánico organizado por el Centro para el Estudio de Volcanes Activos (CSAV) en Hilo
Figura 4: Participantes del taller CSAV junto a técnicos del Observatorio Vulcanológico de Hawái (Fuente: CSAV)


El Centro pare el Estudio de Volcanes Activos (CSAV) cuenta con el soporte técnico y financiero del Programa de Asistencia para Desastres Volcánicos (VDAP) del Servicio Geológico de los Estados Unidos (USGS).


M. Córdova, P. Mothes
Instituto Geofísico
Escuela Politécnica Nacional

Como parte de las tareas de vigilancia de rutina que el IG-EPN lleva a cabo en los principales volcanes del Ecuador, un grupo de técnicos realizó una campaña de mediciones y muestreo en las principales zonas termales del Complejo Volcánico Chiles-Cerro Negro (CV-CCN) entre el 02 y el 04 de junio del 2025.

Vigilancia periódica del Complejo Volcánico Chiles-Cerro Negro, provincia del Carchi
Figura 1.- Muestreo directo de gases en la zona de Aguas Hediondas con el método de Giggenbach 1985. Foto: E. Telenchana/IG-EPN.


Desde finales del 2013, el CV-CCN ha presentado señales sísmicas anómalas, llegándose a registrar más de 8000 eventos sísmicos en un solo día y generándose en ocasiones fuertes sismos sentidos que afectaron a las edificaciones de la zona. Desde entonces el Geofísico ha reforzado las redes de monitoreo, mediante la instalación de nuevos instrumentos y campañas periódicas de vigilancia.

Vigilancia periódica del Complejo Volcánico Chiles-Cerro Negro, provincia del Carchi
Figura 2.- Sobrevuelo con dron térmico realizado en la zona de Aguas Hediondas Foto: D. Sierra/IG-EPN. Imágenes de Dron: E. Telenchana/IG-EPN.


Durante esta campaña, el equipo visitó las fuentes termales y vertientes de: Aguas Hediondas, Aguas Negras, El Artezón y La Colorada. En todas ellas se realizó la medición de parámetros de campo y el muestreo para la determinación de elementos mayoritarios, mismo que se realiza en los laboratorios del Centro de Investigación y Control Ambiental (CICAM) de la Escuela Politécnica Nacional.

Vigilancia periódica del Complejo Volcánico Chiles-Cerro Negro, provincia del Carchi
Figura 3.- Mantenimiento y extracción de datos de la estación MultiGAS permanente en Aguas Negras. Medición de parámetros físico-químicos en la fuente termal de Aguas Negras. Foto: D. Sierra/IG-EPN.


Los técnicos también realizaron muestreo de gases en la zona de Aguas Hediondas y mediciones MultiGAS. Así mismo, la estación permanente de medición de gases/temperatura de Aguas Negras recibió mantenimiento y se realizó la recuperación de los datos de los últimos meses.

Vigilancia periódica del Complejo Volcánico Chiles-Cerro Negro, provincia del Carchi
Figura 4. – Medición de parámetros físico-químicos y muestreo en la fuente de El Artezón. Mediciones MultiGAS en la zona de Lagunas Verdes Foto: M. Almeida y D. Sierra/IG-EPN.


Adicionalmente los técnicos del IG-EPN se reunieron con el Ing. Ing. Northon Burbano Gerente General de la EPMAPA-T, para tratar temas alusivos a la fuente termal del Hondón y el aprovechamiento de las aguas termales del Chiles. Los técnicos del Geofísico remitieron un informe a la EPMAPA-T con información detallada sobre la fuente termal del Hondón.

Al momento, el Complejo Chiles - Cerro Negro muestra una actividad superficial muy baja sin cambios e interna baja sin cambios. El IG-EPN mantiene el monitoreo permanente de este volcán, e informará oportunamente en caso de presentarse cualquier novedad.

D. Sierra, M. Almeida, E. Telenchana
Instituto Geofísico
Escuela Politécnica Nacional

Entre 17 y 20 de junio de 2025, técnicos del Instituto Geofísico de la Escuela Politécnica Nacional (IG-EPN) realizaron la recolección de muestras de ceniza asociadas al proceso eruptivo del volcán Sangay, así como el mantenimiento de la red de cenizómetros ubicados en las provincias de: Chimborazo y Morona Santiago. Los resultados de la misión revelan una caída de ceniza muy leve a moderada en la provincia de Chimborazo.

El volcán Sangay, ubicado en la provincia de Morona Santiago, presenta al momento de publicación de este reporte una actividad superficial catalogada alta tendencia sin cambio y una actividad interna catalogada como moderada sin cambios.

Recolección de ceniza y mantenimiento de la red de cenizómetros del volcán Sangay
Figura 1.- Mantenimiento de la red de cenizómetros del volcán Sangay en las provincias de Chimborazo y Morona Santiago (Fotos: D. Sierra y E. Telenchana / IG-EPN).


Trabajo de campo
Durante la salida de campo, los técnicos del IG-EPN visitaron 28 sitios para realizar el mantenimiento de los cenizómetros y el muestreo de la caída de ceniza asociadas a las emisiones ocurridas entre el entre el 22 de abril y el 20 de junio de 2025 (Figura 1). Del mismo modo, los Observadores Volcánicos del cantón Guamote, en las comunidades al occidente del volcán, también realizaron el mantenimiento de sus cenizómetros.

En el periodo comprendido entre abril y junio de 2025, el Centro de Alertas de Ceniza Volcánica de Washington (Washington VAAC) reportó 194 alertas de dispersión de ceniza, con alturas de hasta 4000 metros sobre el nivel de cráter, y con emisiones que alcanzaron los 375 km de distancia desde el volcán, con una dirección preferente al occidente (Figura 2). Además, para este periodo se tuvo reportes de caída de ceniza en 3 ocasiones, en varias localidades de la parroquia Cebadas.

Recolección de ceniza y mantenimiento de la red de cenizómetros del volcán Sangay
Figura 2. Mapa del alcance de las nubes de ceniza y de los reportes de caída de ceniza entre el 22 de abril y el 20 de junio de 2025.


Luego de secar y pesar las muestras de ceniza recolectadas durante la campaña de campo, se obtuvieron valores de carga (gramos por metro cuadrado) indicando la cantidad de ceniza que cayó en cada localidad entre el 22 de abril y 20 de junio de 2025 (Figura 3). Según la carga, la caída de ceniza es clasificada como caída fuerte (más de 1000 g/m2), moderada (100 – 1000 g/m2), leve (10 – 100 g/m2) y muy leve (0 – 10 g/m2). Las comunidades donde cayó más ceniza son Retén Ichubamba y San Nicolas de la parroquia Cebadas, cantón Guamote.

Los resultados para cada localidad se presentan a continuación:
1. Caída moderada: Retén (201.1 g/m2), San Nicolás (170.7 g/m2), Pancún (130.5 g/m2), Cashapamba (124.9 g/m2), San Antonio (114.6 g/m2), Guarguallá Chico (112.3 g/m2).
2. Caída leve: Chauzán 01 (69.2 g/m2), Rayoloma (66.4 g/m2), Chauzán 02 (59.4 g/m2), Palmira Dávalos (57.5 g/m2), Vía Oriente Cebadas (53.3 g/m2), Cebadas 01 (48.2 g/m2), Atapo Santa Cruz (42.1 g/m2), Guamote (38.8 g/m2) Palmira GAD (28.5 g/m2).
3. Caída muy leve: Pallatanga GAD (8.4 g/m2), Juan de Velasco GAD (8.0 g/m2), Chaguarpata (7.5 g/m2), Alausí (7.5 g/m2), Flores GAD (7.5 g/m2), Punto cero Atillo (3.7 g/m2), Colta GAD (2.8 g/m2), Cumandá GAD (2.8 g/m2), Atillo Comunidad (2.8 g/m2), Hostería Farallón (1.4 g/m2), Huigra GAD (0.9 g/m2), Luz de América (0.5 g/m2).

Posteriormente, las muestras de ceniza son analizadas más a detalle en el laboratorio del IG-EPN para determinar su contenido, composición y principales características; esto permite obtener información fundamental para una mayor comprensión y evaluación de la amenaza.

Recolección de ceniza y mantenimiento de la red de cenizómetros del volcán Sangay
Figura 3. Ubicación de los Cenizómetros del Instituto Geofísico (IG) y de los Observadores Volcánicos (OV) con la carga de ceniza acumulada entre el 22 de abril y el 20 de junio de 2025 para el volcán Sangay (Fuente: Google Earth Pro).


Finalmente, la campaña de recolección realizada para el periodo entre abril y junio de 20205, generalmente muestra un incremento en la cantidad de ceniza respecto al periodo anterior comprendido entre febrero y abril de 2025, con un par de excepciones como lo es para los sitios de Utucún-Rayoloma y Colta GAD (Figura 4).

Recolección de ceniza y mantenimiento de la red de cenizómetros del volcán Sangay
Figura 4. Comparación de la carga de ceniza seca (g/m2) entre los periodos de febrero-abril 2025 y abril-junio de 2025.


E. Telenchana, D. Sierra.
Instituto Geofísico
Escuela Politécnica Nacional

El Instituto Geofísico de la Escuela Politécnica Nacional (IG-EPN) formó parte activa del Quincuagésimo Primer Curso Panamericano de Geografía Aplicada, titulado “Fortaleciendo la Resiliencia: Gestión del Riesgo de Desastre y Sistemas de Alerta Temprana en la Era del Cambio Climático”. El evento fue organizado por el Centro Panamericano de Estudios e Investigaciones Geográficas (CEPEIGE) y se llevó a cabo el viernes 27 de junio de 2025.

IG-EPN participa en el Quincuagésimo Primer Evento de la Gestión del Riesgo de Desastre y Sistemas de Alerta Temprana del CEPEIGE
Figura 1. Vista del auditorio durante las conferencias del evento Fortaleciendo la Resiliencia: Gestión del Riesgo de Desastres y Sistemas de Alerta Temprana en la Era del Cambio Climático. Foto: A. Chiluisa/ IG-EPN.


La jornada reunió a representantes de diversas instituciones nacionales e internacionales comprometidas con el fortalecimiento de los sistemas de gestión del riesgo y de alerta temprana ante amenazas naturales. Durante el evento, se compartieron experiencias, avances tecnológicos y estrategias interinstitucionales para mejorar la resiliencia de las poblaciones frente al creciente impacto de fenómenos naturales, intensificados por los efectos del cambio climático.

IG-EPN participa en el Quincuagésimo Primer Evento de la Gestión del Riesgo de Desastre y Sistemas de Alerta Temprana del CEPEIGE
Figura 2. Personal del Instituto Geofísico junto al stand informativo de vigilancia sísmica y volcánica Foto: A. Mullo/ IG-EPN.


El IG-EPN contó con un stand informativo en el que se difundieron las diferentes líneas de trabajo que desarrolla el instituto en cuanto a monitoreo y vigilancia sísmica y vulcanológica. Los asistentes pudieron conocer de cerca las herramientas tecnológicas utilizadas, las redes de monitoreo desplegadas a nivel nacional y los procesos de emisión de alertas y comunicación del riesgo.

IG-EPN participa en el Quincuagésimo Primer Evento de la Gestión del Riesgo de Desastre y Sistemas de Alerta Temprana del CEPEIGE
Figura 3. Técnicos del IG-EPN muestran las diferentes técnicas de vigilancia sísmica y volcánica. Foto: A. Chiluisa/ IG-EPN.


IG-EPN participa en el Quincuagésimo Primer Evento de la Gestión del Riesgo de Desastre y Sistemas de Alerta Temprana del CEPEIGE
Figura 4. Técnicos del IG-EPN muestran maqueta 3D de la falla de Quito a los visitantes. Foto: A. Chiluisa/ IG-EPN.


Además, como parte del programa académico, el PhD. Freddy Vásconez, investigador del IG-EPN, presentó una ponencia titulada “Peligro sísmico y vulcanológico del Ecuador”, en la que expuso los principales escenarios de riesgo asociados a la actividad tectónica y volcánica del país. Su presentación destacó la importancia de la vigilancia científica continua y del fortalecimiento de la cultura del riesgo en la sociedad ecuatoriana.

La participación del IG-EPN en este importante evento reafirma su compromiso con la investigación científica y la generación de información clave para la gestión del riesgo en el Ecuador, así como su apoyo al trabajo conjunto con otras instituciones para enfrentar los desafíos que impone el cambio climático.


A. Chiluisa, G. Viracucha
Instituto Geofísico
Escuela Politécnica Nacional

Entre el 09 y 18 de junio, personal del Instituto Geofísico de la Escuela Politécnica Nacional (IG-EPN) realizaron la primera campaña de mantenimiento y recolección de datos de las estaciones de monitoreo de la RENGEO (Red Nacional de Geodesia) ubicadas en las provincias de Esmeraldas, Manabí, Santo Domingo de los Tsáchilas, Guayas y Santa Elena.

Las estaciones geodésicas cuentan con equipos receptores GNSS marca Trimble y Leica modelos Alloy, NetRS, NetR9 y GR50, los cuales toman datos de desplazamiento con el objetivo de detectar y cuantificar el movimiento de las placas tectónicas, así como la deformación del suelo causada por movimiento de fallas activas en la costa ecuatoriana. El Instituto Geofísico ha instalado y mantiene una red de estaciones GPS/GNSS que permiten estudiar estos movimientos en el territorio ecuatoriano.

Trabajos de campo en la Red Nacional de Geodesia (RENGEO) ubicadas en la costa ecuatoriana
Foto 1. Verificación de funcionamiento de equipos, mantenimiento y descarga de datos en las estaciones de monitoreo GNSS del IG-EPN. (A. Herrera).


La RENGEO cuenta con más de 80 estaciones de monitoreo, las cuales permiten mantener la vigilancia de desplazamientos relativos de las estructuras geológicas a lo largo del país.

Esta campaña fue realizada con éxito gracias a la colaboración entre el Instituto Geofísico de la Escuela Politécnica Nacional (IG-EPN) y el Instituto de Investigación para el Desarrollo (IRD).

 

A. Herrera
Instituto Geofísico
Escuela Politécnica Nacional

Página 1 de 70