Noticias

Noticias

Subcategorías

Sismos

Sismos

Uno de sus objetivos fundamentales es el monitoreo sísmico permanente de la actividad de origen tectónico y volcánico del territorio nacional.

Ver artículos...
Volcanes

Volcanes

Los volcanes activos son observados a través de diversas tecnologías.

Ver artículos...
Instrumentos

Instrumentos

La tecnología comprende un conjunto de teorías y técnicas que permiten el aprovechamiento práctico del conocimiento científico. No es de sorprenderse que a diario aparezcan nuevas técnicas y revolucionarias teorías que permitan que la tecnología avance a pasos agigantados, facilitando procesos y resolviendo problemas dentro de diversas áreas del quehacer de la comunidad en general.


Desde su creación, el IG ha visto la necesidad de utilizar instrumentos que le permitan realizar una precisa vigilancia tanto en sísmica como en varios otros parámetros relacionados al vulcanismo.

Ver artículos...

El Instituto Geofísico de la Escuela Politécnica Nacional, como entidad clave en la vigilancia de amenazas sísmicas y volcánicas en Ecuador, el 11 de diciembre de 2024, contribuyó al fortalecimiento de la reducción del riesgo de desastres, a través del curso Formación de Formadores para Docentes de la Unidad Educativa José Mejía Lequerica en el sector de Machachi, cantón Mejía. Esta metodología aplicada desde el programa desarrollado por el proyecto “Anticípate por el Cotopaxi”.

Contribución del IG-EPN al fortalecimiento de la reducción del riesgo de desastres en la Unidad Educativa José Mejía Lequerica
Figura 1.- Exposición sobre los fenómenos volcánicos a cargo del personal del IG-EPN (Foto: A. Chiluisa- IG-EPN).


Funcionarios de las áreas de Vulcanología y Sismología del IG-EPN compartieron con los docentes de la unidad educativa los procesos y las herramientas utilizadas para el monitoreo sísmico y volcánico en el país. Explicaron cómo se emplean tecnologías avanzadas como estaciones sísmicas, sensores de gas, GPS, entre otros, para detectar y analizar en tiempo real la actividad sísmica y volcánica; así como también sobre la relevancia de la vigilancia continua para prever posibles eventos asociados a un proceso eruptivo en el volcán Cotopaxi.

Contribución del IG-EPN al fortalecimiento de la reducción del riesgo de desastres en la Unidad Educativa José Mejía Lequerica
Figura 2.- Explicación sobre el monitoreo sísmico y volcánico en tiempo real (Foto: A. Chiluisa- IG-EPN).


Un especial énfasis, para reforzar los conocimientos de los docentes relacionados con los fenómenos asociados a la actividad del volcán Cotopaxi, el impacto de las caídas de ceniza y recomendaciones de que tomar en cuenta en casos de que este fenómeno ocurra, especialmente al encontrarse en sus labores dentro de sus instalaciones. Estas iniciativas permiten fortalecer las estrategias de prevención y respuesta ante emergencias.

La actividad proporcionó una visión más clara sobre la identificación de señales tempranas de actividad volcánica y subrayó la importancia de la preparación y la concienciación comunitaria para mitigar los impactos de estos fenómenos volcánicos en las comunidades.

A. Chiluisa, F. Naranjo, G. Viracucha
Instituto Geofísico
Escuela Politécnica Nacional

Entre el 25 y 28 de noviembre del 2024, integrantes del Área de Vulcanología del Instituto Geofísico de la Escuela Politécnica Nacional llevaron a cabo una campaña de campo en el volcán Caldera de Chalupas para identificar afloramientos y recolectar muestras de depósitos volcánicos de zonas donde no se tenía información sobre los tipos de depósitos presentes.

La Caldera de Chalupas se encuentra en la cresta de la Cordillera Real, en la región centro-oriental de los Andes Ecuatorianos, en los límites occidentales de los cantones Tena y Archidona de la provincia de Napo. Este volcán, tipo caldera, es uno de los más grandes en los Andes del Norte, lo que ha llevado a que se le denomine en ocasiones "Supervolcán" o "Megavolcán". La última gran erupción que originó la caldera de Chalupas ocurrió hace aproximadamente 211 mil años, produciendo un extenso depósito de ceniza y pómez conocido como la Ignimbrita de Chalupas.

La caldera tiene un diámetro cercano a los 17 km en su eje Este-Oeste y se presenta como una depresión elíptica claramente visible alrededor del volcán Quilindaña, misma que ha sido rellenada con depósitos volcánicos.
El muestreo se llevó a cabo en la zona noreste de la caldera, a lo largo de los márgenes del río Tamboyacu, donde se observaron afloramientos de aproximadamente 40 m de espesor (Figura 1). Estos afloramientos fueron identificados de ambiente fluvial, descartando depósitos eruptivos más recientes (Figura 2).

Trabajos de investigación geológicos en la Caldera de Chalupas
Figura 1. Márgenes del río Tamboyacu. Fotografía: IG-EPN.


Trabajos de investigación geológicos en la Caldera de Chalupas
Figura 2. Depósitos fluviales del río Tamboyacu. Fotografía: IG-EPN.


De igual forma se recogieron muestras en la zona noroccidental en el borde de la caldera de Chalupas correspondientes a depósitos de flujos piroclásticos de pómez y ceniza de color amarillo con una potencia de ̴ 20 m sobre depósitos fluviales (Figura 3) en el margen izquierdo del canal del río Tamboyacu, mismas que serán analizadas bajo microscopio binocular y posterior a esto se realizarán análisis de laboratorio para determinar sus fuentes más probables. Se asume que estos depósitos pertenecen al volcán Cotopaxi

Trabajos de investigación geológicos en la Caldera de Chalupas
Figura 3. Depósitos de pómez amarillos. Fotografía: IG-EPN.


Finalmente, queremos expresar nuestro más sincero agradecimiento a los integrantes de la Hacienda Yanahurco por su amabilidad y colaboración durante esta campaña lo que nos permitió llevar a cabo el muestreo de los diferentes objetivos.

Estos trabajos se realizaron como parte del Proyecto de Investigación PIGR-23-02 del Vicerrectorado de Investigación, Innovación y Vinculación de la Escuela Politécnica Nacional, dirigido por la MSc. Patricia Mothes. Los integrantes de la comisión fueron Marco Córdova, Ana Chiluisa e Isaac Ortega (Pasante de Geología de la EPN).

A. Chiluisa, M. Córdova, P. Mothes.
Instituto Geofísico
Escuela Politécnica Nacional

Durante noviembre de 2024, miembros del Instituto Geofísico de la Escuela Politécnica Nacional (IG-EPN) impartieron el primer Taller de Capacitación sobre la Red de Observadores Volcánicos del Ecuador (ROVE) a vigías del volcán Tungurahua, y a voluntarios de varias comunidades aledañas al volcán Cotopaxi, gracias a las gestiones de la Agencia Adventista de Desarrollo y Recursos Asistenciales (ADRA Ecuador) y del Programa de las Naciones Unidas para el Desarrollo (PNUD), en el marco del proyecto “Anticípate por el Cotopaxi”.

Talleres de capacitación para formar parte de la Red de Observadores Volcánicos del Ecuador
Figura 1. Momentos durante las capacitaciones sobre la ROVE en Baños y Chantilín (Fotos: E. Telenchana /IG-EPN).


El objetivo de este evento fue promover y ampliar la ROVE, con el propósito de informar a más personas sobre los peligros volcánicos y cómo pueden ser afectados por ellos. Además, se busca fomentar que los observadores compartan los conocimientos adquiridos sobre los volcanes y los diferentes fenómenos volcánicos dentro de sus comunidades, con la finalidad de contribuir al bienestar y reducir el impacto en sus poblaciones y medios de vida.

Asimismo, se promueve el intercambio de información entre los observadores, el IG-EPN y otras instituciones de apoyo que forman parte del grupo de WhatsApp que reúne a todos los voluntarios capacitados.

El encuentro con los vigías del volcán Tungurahua se llevó a cabo el 14 de noviembre en la ciudad de Baños. En esta reunión participaron voluntarios de las comunidades de Chacauco, Cusúa, Baños, Pondoa Bajo, Lligua, Ulba, y Palictahua. Este espacio de encuentro entre los vigías del volcán Tungurahua y los técnicos del IG-EPN, a más de la capacitación recibida, permitió el intercambio de conocimientos y experiencias sobre el proceso eruptivo que mantuvo el volcán Tungurahua entre 1999 y 2016.

Talleres de capacitación para formar parte de la Red de Observadores Volcánicos del Ecuador
Figura 2. Capacitación a los vigías del volcán Tungurahua y explicación del aplicativo para celular (Fotos: E. Telenchana /IG-EPN).


En colaboración con los vigías también se llevó a cabo la instalación de recolectores de ceniza (cenizómetros) en las comunidades de Baños, Pondoa Bajo y Chacauco en la provincia de Tungurahua, y Choglontus y Palictahua en la provincia de Chimborazo (Fig. 4). Anteriormente, existía una red de cenizómetros instalada en las proximidades del volcán Tungurahua mientras el volcán estuvo activo, lo cual permitió recolectar muestras de ceniza para entender el proceso eruptivo de dicho volcán. Aunque actualmente el volcán Tungurahua no presenta actividad volcánica, los cenizómetros instalados en el sur del país permitirán la recolección de ceniza volcánica de pulsos eruptivos de otros volcanes, como el Sangay.

Talleres de capacitación para formar parte de la Red de Observadores Volcánicos del Ecuador
Figura 3. Instalación de cenizómetros con los vigías del volcán Tungurahua (Fotos: E. Telenchana y B. Bernard /IG-EPN).


Los días 26 y 27 de noviembre se llevó a cabo la reunión con los voluntarios de los barrios Chantilín GAD Parroquial, Santa Teresita, Chantilín Grande, Unión Narváez, Chantilín Centro que son parte del cantón Saquisilí, y Rancho Saquimalag, San Ramón, Agua Clara Cutuchi, y Langualó Grande pertenecientes al cantón Latacunga. Con ellos se impartieron las temáticas de Ecuador, un país volcánico; ¿Qué es un volcán?; ¿Dónde nos encontramos respecto al volcán Cotopaxi?; Los Peligros Volcánicos asociados al Volcán Cotopaxi; Rol de los Observadores Volcánicos, Práctica y aplicativo para celular para realizar los reportes de observaciones. Además, se atendió las preguntas e inquietudes de los participantes y se abrió un espacio de dialogo con las autoridades.

Talleres de capacitación para formar parte de la Red de Observadores Volcánicos del Ecuador
Figura 4. Momentos durante las capacitaciones en Chantilín y Joseguango Bajo (Fotos: M. Alarcón/ADRA y E. Telenchana /IG-EPN).


Al finalizar cada uno de los cursos, por parte del Proyecto “Anticípate por el Cotopaxi“ se hizo la entrega de Kits con material para realizar la elaboración, instalación y mantenimiento de los cenizómetros a cada uno de los participantes de los diferentes barrios. Con la ayuda de estos materiales e insumos se realizaron cenizómetros conjuntamente con los voluntarios de la ROVE, uno de los cuales se instaló en el edificio del GAD Parroquial de Chantilín.

Talleres de capacitación para formar parte de la Red de Observadores Volcánicos del Ecuador
Figura 5. Entrega de los Kits de Observadores e instalación del cenizómetro en el edificio del GAD Parroquial de Chantilín (Fotos: M. Alarcón/ADRA y V. Guambo/PNUD).


El volcán Cotopaxi estuvo en erupción entre 2022 y 2023, y aunque la erupción fue de baja magnitud y ha llegado a su fin, ha sido un importante recordatorio de lo que significa vivir en las inmediaciones de un volcán activo. Son estos tiempos de relativa calma los mejores momentos para realizar tareas de prevención para el caso de una futura erupción.

E. Telenchana, A. Vásconez, B. Bernard.
Instituto Geofísico
Escuela Politécnica Nacional

El día 09 de diciembre de 2024 un grupo de estudiantes de la Universidad Estatal de Bolívar de la carrera de “Ingeniería en Riesgos de Desastres” visitó el Instituto Geofísico de la Escuela Politécnica Nacional para recibir un recorrido guiado y charlas informativas.

Estudiantes de la Universidad Estatal de Bolívar Visitan el IG-EPN
Figura 1.- Visita de los estudiantes de la Universidad Estatal de Bolívar (09/12/2024).


La carrera de Ingeniería en Riesgos de Desastres se enfoca en la reducción de riesgos y los impactos de los desastres. Los estudiantes aprenden a aplicar modelos y sistemas de análisis para evaluar riesgos, establecer medidas de prevención y mitigación, manejar escenarios adversos y finalmente participar en la recuperación post desastre. Este tipo de acercamientos entre la academia y los entes rectores, permiten que los estudiantes reciban el conocimiento directamente desde la fuente y sepan dónde acudir en busca de información cuando ya sean profesionales.
Un total de 41 estudiantes acompañados de su docente visitaron el Instituto Geofísico en un pequeño recorrido museográfico en el que se tratan diversos temas relacionados con los fenómenos sísmicos y volcánicos, así como la vigilancia de los mismos.

Estudiantes de la Universidad Estatal de Bolívar Visitan el IG-EPN
Figura 2.- Estudiantes de la U. Estatal de Bolívar, recorren la exposición museográfica permanente del IG-EPN (Foto: G. Viracucha/IG-EPN).


Para saber más sobre la exhibición museográfica del IG-EPN visita el siguiente enlace: https://www.igepn.edu.ec/interactuamos-con-usted/2100-inauguracion-de-exposicion-museografica-permanente-en-el-ig-epn.

Los estudiantes recibieron además dos charlas por parte de técnicos del IG-EPN. La primera de ellas estuvo centrada en los fenómenos sísmicos su ocurrencia en nuestro país. Esta charla fue dictada por parte de la jefa del Área de Sismología del Geofísico.

Estudiantes de la Universidad Estatal de Bolívar Visitan el IG-EPN
Figura 3.- Estudiantes de la Estatal de Bolívar, reciben charla sobre los fenómenos sísmicos (Foto: G. Viracucha/IG-EPN).


La segunda charla estuvo centrada en la vigilancia volcánica y en la interpretación de los mapas de peligro volcánico. Los estudiantes recibieron varios ejemplares de mapas impresos de diferentes volcanes de nuestro país y realizaron ejercicios prácticos para entender como leer y cómo interpretar un mapa.

Hoy en día el IG-EPN cuenta con una biblioteca digital con más de 20 mapas para 15 volcanes ecuatorianos, todos ellos disponibles en el siguiente enlace: https://www.igepn.edu.ec/interactuamos-con-usted/2094-como-entender-adecuadamente-nuestros-mapas-de-peligro-volcanico.

Estudiantes de la Universidad Estatal de Bolívar Visitan el IG-EPN
Figura 4.- Estudiantes de la Estatal de Bolívar, realizan ejercicios prácticos para aprender a leer e interpretar mapas de peligro volcánicos (Foto: G. Viracucha/IG-EPN).


D. Sierra, G. Viracucha
Instituto Geofísico
Escuela Politécnica Nacional

Gracias al apoyo logístico y colaboración del MAATE y el Centro de Turismo de Comunitario (CTC) Lago Verde Quilotoa, un equipo de técnicos del Instituto Geofísico de la Escuela Politécnica Nacional (IG-EPN) realizó una campaña de mediciones de CO2 difuso (dióxido de carbono) y muestreo de aguas en la Laguna del Quilotoa y sus alrededores entre el 28 y 30 de octubre de 2024.

La medición de CO2 difuso en la superficie del lago se ha venido realizando en otros volcanes como Cuicocha desde hace más de 10 años, pero en el Quilotoa es apenas la segunda campaña que se realiza. Estas actividades están enmarcadas en los proyectos ECLAIR financiado por el IRD y el PIGR-22-02, financiado por el Vicerrectorado de Investigación de la Escuela Politécnica Nacional.

Mediciones de CO2 en la laguna del volcán Quilotoa
Figura 1.- Laguna del Quilotoa vista desde el camino que desciende desde el borde hacia el lago, borde sur-occidental 29/10/2024 (Foto: D. Sierra).


Para llevar a cabo las mediciones de CO2, se utiliza el “método de la cámara de acumulación”, en el cual se usa una campana de aluminio, acoplada a un sensor tipo LI-COR® para determinar el flujo de CO2. Con este instrumento, se realiza un muestreo representativo dentro de toda la laguna, y finalmente mediante técnicas geoestadísticas se elabora un mapa de emisiones de CO2 con el cual se puede obtener el flujo total emitido.

Mediciones de CO2 en la laguna del volcán Quilotoa
Figura 2.- Medición de CO2 difuso en la superficie de la laguna con el método de la campana de acumulación 29/10/2024 (Fotos: D. Sierra, S. Hidalgo /IG-EPN).


Durante esta campaña los técnicos llevaron a cabo un total de 86 mediciones. Al momento de publicación del presente, los datos están siendo procesados y se emitirá un informe con los resultados.

Mediciones de CO2 en la laguna del volcán Quilotoa
Figura 3.- Mapa de puntos de muestreo tomados durante la campaña del 29/10/2024. Base Google Earth.


Adicionalmente, se tomó una muestra de agua en la zona de burbujeo localizada al borde sur del lago. También se realizó el muestreo de fuentes termales en todos los alrededores del Volcán incluyendo las vertientes de: Casa Quemada, Chilca Anchi, Kunuk Yaku, Cashapata y Padre Rumi, las muestras están siendo en el Centro de Investigación y Control Ambiental (CICAM) de la EPN, donde se realizará el análisis químico para la determinación de elementos mayoritarios.

Mediciones de CO2 en la laguna del volcán Quilotoa
Figura 4.- Muestreo de vertientes termales en Casa Quemada y Padre Rumi (Fotos. D. Sierra, S. Hidalgo/ IG-EPN).


Mediciones de CO2 en la laguna del volcán Quilotoa
Figura 5.- Muestreo de vertientes de Chilca Anchi y Cashapata (Fotos. D. Sierra, S. Hidalgo/ IG-EPN).


¿Por qué es importante realizar este tipo de mediciones?
El Quilotoa es un volcán que no se ha estudiado por completo, aún se desconoce parte de su historia. Sin embargo, sabemos que su última gran erupción data de apenas hace 800 años. Adicionalmente, se sabe que, en 1797, asociado al fuerte movimiento causado por el sismo de Riobamba, la laguna se agitó fuertemente, liberando una gran cantidad de gases que mataron por asfixia a varias cabezas de ganado, localizadas en el interior del cráter.

El Quilotoa permanece en calma al día de hoy, pero está catalogado como un volcán Potencialmente Activo. Los estudios que el IG-EPN realiza en el volcán nos permiten entender mejor su comportamiento con el fin de prepararse de mejor manera en caso de una eventual reactivación en el futuro.


D. Sierra, S. Hidalgo
Instituto Geofísico
Escuela Politécnica Nacional