Noticias

Noticias

Subcategorías

Sismos

Sismos

Uno de sus objetivos fundamentales es el monitoreo sísmico permanente de la actividad de origen tectónico y volcánico del territorio nacional.

Ver artículos...
Volcanes

Volcanes

Los volcanes activos son observados a través de diversas tecnologías.

Ver artículos...
Instrumentos

Instrumentos

La tecnología comprende un conjunto de teorías y técnicas que permiten el aprovechamiento práctico del conocimiento científico. No es de sorprenderse que a diario aparezcan nuevas técnicas y revolucionarias teorías que permitan que la tecnología avance a pasos agigantados, facilitando procesos y resolviendo problemas dentro de diversas áreas del quehacer de la comunidad en general.


Desde su creación, el IG ha visto la necesidad de utilizar instrumentos que le permitan realizar una precisa vigilancia tanto en sísmica como en varios otros parámetros relacionados al vulcanismo.

Ver artículos...

Nota aclaratoria
El trabajo realizado durante esta visita al cráter del volcán Guagua Pichincha se realizó por profesionales experimentados bajo normas de seguridad estrictas con equipamiento de protección personal y contacto permanente vía radio con el centro TERRAS del Instituto Geofísico. No se recomienda el descenso al volcán.


Resumen
El miércoles 21 de septiembre del 2016, un equipo de técnicos del Instituto Geofísico de la Escuela Politécnica Nacional (IG-EPN) y del Instituto de Investigación para el Desarrollo (IRD, Francia) realizó trabajos geológicos en el cráter del volcán Guagua Pichincha. Los objetivos de la misión fueron: medir la temperatura y la concentración de CO2 en los diferentes campos fumarólicos, muestrear azufre nativo y rocas del domo de la última erupción, y realizar varias fotografías y videos del domo Cristal mediante el uso de un drone.

La temperatura máxima de las fumarolas fue de 86,3°C, medido en la fumarola de muestreo, asociada al sistema hidrotermal del volcán. En general se pudo observar un aumento del CO2 al entrar en las zonas de fumarolas. Sin embargo, en la fumarola llamada “locomotora” se midió un valor anómalo de ~ 65 000 ppm. Es necesario realizar medidas adicionales para confirmar o no la presencia de este gas en altas concentraciones en este sector. Afuera de las zonas de fumarolas, los valores de CO2 están dentro de lo normal. Las fotografías tomadas con drone no revelaron cambios en las estructuras conocidas del volcán.


Recorrido
El grupo salió a las 4h45 de la mañana del Instituto Geofísico en dirección a Lloa y llegó al refugio del volcán Guagua Pichincha a las 6h00. Las condiciones climáticas eran óptimas para realizar el recorrido (Fig. 1). Al domo Cristal se llegó a las 7h30 (Fig. 2). En primer lugar, se trabajó en la fumarola de muestreo (Fig. 3) para instalar el medidor de CO2 y medir la temperatura de la misma. Luego sobre el domo se tomaron imágenes con el drone. A las 10h00 se recuperó el medidor de CO2, y se tomó una muestra de azufre nativo. Se realizó una visita al domo formado en la última erupción en el año 2000. Durante el trayecto se realizaron medidas de CO2 y de temperatura de varias fumarolas. En este domo se tomó una muestra de roca. Se tomaron datos de la fumarola “Locomotora”, pasando por el campo de fumarolas alineadas. (Fig. 2).

Medidas de temperatura y CO2 de las fumarolas, muestreo y fotografías con drone

Figura 1. Amanecer visto desde el refugio del volcán Guagua Pichincha; de izquierda a derecha se observan los volcanes: Antisana, Sincholahua, Quilindaña, Pasochoa, Cotopaxi y Rumiñahui. Fotografía: Vásconez F. IG-EPN, 21/09/2016.

 

Medidas de temperatura y CO2 de las fumarolas, muestreo y fotografías con drone

Figura 2. Recorrido realizado el 21 de septiembre de 2016 en el volcán Guagua Pichincha. La traza del recorrido está en verde. Los números corresponden a la temperatura máxima medida en cada campo de fumarolas. Los puntos en azul, amarillo, naranja y rojo corresponden a mediciones de CO2.

 

Medidas de temperatura y CO2 de las fumarolas, muestreo y fotografías con drone

Figura 3. Izquierda: Cráter del volcán Guagua Pichincha donde se destacan los diferentes campos fumarólicos. Imagen: Cámara GPCAM. Derecha: Fumarolas de muestreo, los gases alcanzan alturas de al menos 10 metros. Fotografía: F. Vásconez IG-EPN, 21/09/2016.

 


Trabajos geológicos
La temperatura fue medida mediante un termómetro datalogger con cuatro canales Omega HH309A con una termocupla tipo K (Fig. 4). El valor máximo obtenido en las diferentes fumarolas alcanzó 86,3°C en la fumarola de muestreo (Fig. 2). Esta temperatura corresponde al punto de ebullición del agua a la altura de las fumarolas (~4050 m sobre el nivel del mar). Las otras fumarolas mostraban temperaturas similares o ligeramente (Tabla 1).

Medidas de temperatura y CO2 de las fumarolas, muestreo y fotografías con drone

Figura 4. Medición de temperatura en las fumarolas del Guagua Pichincha. Fotografías: B. Bernard. IG-EPN, 21/09/2016.

 

La concentración de CO2 en las fumarolas fue medida con un sensor experimental prestado por la universidad UCL (University College of London). En general se pudo observar un aumento del CO2 al entrar en las zonas de fumarolas con valores de hasta 818 ppm (valor promedio del CO2 en la atmósfera ~ 400 ppm en 2016, fuente NOAA), las cuales pueden provocar somnolencia. Sin embargo, en la fumarola llamada “locomotora” se midió un valor anómalo de ~ 65 000 ppm, una concentración suficiente para provocar mareo, dolor de cabeza, disfunción visual y auditiva, y hasta pérdida de conciencia si la exposición es prolongada. Es necesario realizar medidas adicionales para confirmar o no la presencia de este gas en altas concentraciones en este sector. Afuera de las zonas de fumarolas los valores de CO2 regresaron a la normal.

Medidas de temperatura y CO2 de las fumarolas, muestreo y fotografías con drone

Tabla 1. Temperatura máxima y CO2 en las diferentes fumarolas del domo Cristal. Coordenadas en UTM (WGS84, zona 17 S).

 

Adicionalmente se realizó el muestreo de azufre nativo en la fumarola de muestreo y también de la roca del nuevo domo extruido en la última erupción de 2000.

Medidas de temperatura y CO2 de las fumarolas, muestreo y fotografías con drone

Figura 5. Muestreo de azufre nativo y rocas del domo de la última erupción en 2000. Fotografías: F. Vásconez y B. Bernard. IG-EPN, 21/09/2016.

 

Medidas de temperatura y CO2 de las fumarolas, muestreo y fotografías con drone

Figura 6. Depósito de azufre nativo en la fumarola de muestreo. Fotografía: B. Bernard, IG-EPN, 21/09/2016.

 


Imágenes con drone
Finalmente se tomaron imágenes con un drone DJI Phantom 2 prestado por el proyecto STREVA. Se pudieron realizar varias tomas de la morfología del domo Cristal en la que se evidencia la actividad superficial y los varios vestigios en la topografía dejado por erupciones pasadas del Guagua Pichincha como son: cráteres de explosión y de impactos de balísticos, zonas de fumarolas, domo de la última erupción entre otros. No se observó cambios morfológicos de las estructuras pre-existentes.

Medidas de temperatura y CO2 de las fumarolas, muestreo y fotografías con drone

Figura 7. Fotografía con drone del domo Cristal. Se observa de izquierda a derecha: la fumarola de muestreo, el domo de 2000, el cráter de 1981. Fotografía: B. Bernard, IG-EPN. 21/09/2016.

 

Medidas de temperatura y CO2 de las fumarolas, muestreo y fotografías con drone

Figura 8. Fotografía del domo de 2000. No se observaron cambios morfológicos. Fotografía: B. Bernard, IG-EPN. 21/09/2016.

 

El IG-EPN, junto a otras instituciones, continúa en su labor de monitorizar a los volcanes activos del Ecuador.


BB/FJV/JB
Instituto Geofísico
Escuela Politécnica Nacional

Lunes, 01 Septiembre 2014 00:00

Medidor de CO2

Se está realizando el diseño e implementación de un equipo que nos permita realizar la medición de la concentración de CO2 disuelto en fuentes acuosas cercanas a los volcanes como método de evaluación de la variación del estado de la actividad del volcán. Este equipo estará integrado por un sistema abierto de agua, un sistema cerrado de gas y un circuito de control.

Entre el 10 y 14 de marzo de 2025, un equipo de técnico del área técnica del Instituto Geofísico de la Escuela Politécnica Nacional (IG-EPN) realizó trabajos de mantenimiento y mejoramiento en la estación multiparamétrica SAG1 – Domono Bajo, ubicada en la provincia de Morona Santiago. Este sitio es clave para el monitoreo del Volcán Sangay y la detección temprana de lahares en el río Upano.

La estación cuenta con un sismómetro de banda ancha, el cual permite registrar la actividad sísmica asociada a la dinámica interna del volcán. Además, la estación está equipada con un arreglo de 5 sensores de infrasonido Chaparral, dispuestos en diferentes ángulos para mejorar la detección y caracterización de señales acústicas de baja frecuencia. El infrasonido es una técnica clave para identificar explosiones volcánicas, emisiones de gases y colapsos de material, permitiendo un monitoreo en tiempo real del Volcán Sangay y la emisión de alertas tempranas.

El monitoreo de lahares en el río Upano también se apoya en estos sensores de infrasonido que permite detectar flujos de lodo y escombros generados por la actividad del Sangay y las intensas lluvias en la región. Estos eventos pueden afectar poblaciones cercanas, infraestructura vial y puentes. Gracias a la instalación y mantenimiento de sensores de infrasonido en la estación SAG1, es posible identificar la ocurrencia de los lahares con anticipación, mejorando la capacidad de respuesta ante emergencias.

Mejoramiento de la infraestructura de la estación multiparamétrica SAG1 – Domono Bajo para la vigilancia del volcán Sangay
Figura 1. Equipo de técnicos del IG-EPN durante los trabajos de mantenimiento y mejoramiento de la estación multiparamétrica SAG1 – Domono Bajo. En la imagen se observa las bases de hormigón y las estructuras metálicas para los sensores de infrasonido. De izquierda a derecha: Javier Pozo, Christian Cisneros, Carlos Macías, Roberto Toapanta.


Mejoramiento de la infraestructura de la estación multiparamétrica SAG1 – Domono Bajo para la vigilancia del volcán Sangay
Figura 2. El Sr. Patricio Anank colaborando en los trabajos de adecuación de la estación multiparamétrica SAG1.


Mejoramiento de la infraestructura de la estación multiparamétrica SAG1 – Domono Bajo para la vigilancia del volcán Sangay
Figura 3. Trabajos de mantenimiento en la estación multiparamétrica SAG1 – Domono Bajo. En la imagen, técnicos del IG-EPN realizan labores de inspección y ajuste en el sistema de suministro de energía en base a sistemas fotovoltaicos y la supervisión de la instrumentación de monitoreo sísmico e infrasonido.


Mejoramiento de la infraestructura de la estación multiparamétrica SAG1 – Domono Bajo para la vigilancia del volcán Sangay
Figura 4. Técnicos del IG-EPN realizan la instalación de las cámaras metálicas para la atenuación de ruido para los sensores de infrasonido.


Mejoramiento de la infraestructura de la estación multiparamétrica SAG1 – Domono Bajo para la vigilancia del volcán Sangay
Figura 5. Vista final de la estación multiparamétrica SAG1 – Domono Bajo tras los trabajos de mantenimiento y mejoramiento. Se observa la instalación de los sensores de infrasonido con su respectiva protección, garantizando la operatividad del monitoreo del Volcán Sangay y la detección de lahares en el río Upano.


Mejoramiento de la infraestructura de la estación multiparamétrica SAG1 – Domono Bajo para la vigilancia del volcán Sangay
Figura 6. Monitoreo en tiempo real de las señales registradas por los cinco sensores de infrasonido instalados en la estación multiparamétrica SAG1. Durante las pruebas del sistema, se detectó una explosión en el Volcán Sangay, confirmando la efectividad del arreglo de sensores para la vigilancia de su actividad eruptiva. La plataforma de Nanometrics muestra las formas de onda en distintos canales, lo que permite analizar la dinámica de las emisiones volcánicas y mejorar la capacidad de alerta temprana ante eventos de gran impacto.


Mejoramiento de la infraestructura de la estación multiparamétrica SAG1 – Domono Bajo para la vigilancia del volcán Sangay
Figura 7. Uno de los cinco nodos de infrasonido instalados. Estos sensores, dispuestos en diferentes ángulos, permiten detectar señales acústicas de baja frecuencia generadas por la actividad eruptiva del Volcán Sangay y la ocurrencia de lahares en el río Upano.


Mejoramiento de la infraestructura de la estación multiparamétrica SAG1 – Domono Bajo para la vigilancia del volcán Sangay
Figura 8. Revisión del estado del sensor, nivelación y centrado.


Mejoramiento de la infraestructura de la estación multiparamétrica SAG1 – Domono Bajo para la vigilancia del volcán Sangay
Figura 9. Equipo del IG-EPN junto al Sr. Juan Francisco Torres, propietario del sitio donde se encuentra la estación multiparamétrica SAG1 – Domono Bajo. La colaboración con la comunidad es fundamental para el mantenimiento y operación del sistema de monitoreo del Volcán Sangay y la detección de lahares en el río Upano.


El Instituto Geofísico de la Escuela Politécnica Nacional (IG-EPN) expresa su más sincero agradecimiento al Sr. Juan Francisco Torres, Dr. Javier Mena Trujillo, Sr. Patricio Anank y Sr. Rómulo Rodríguez, cuyo invaluable apoyo y colaboración fueron fundamentales para la ejecución exitosa de los trabajos en la estación de monitoreo SAG1 – Domono Bajo. Su compromiso y disposición permitiendo alcanzar los objetivos planteados y fortalecer el monitoreo del Volcán Sangay y la detección temprana de lahares en el río Upano. Gracias a este esfuerzo conjunto, se refuerza la capacidad de alerta temprana y se mejora la resiliencia ante eventos volcánicos de la zona.


R. Toapanta, C. Cisneros, C. Macías
Instituto Geofísico
Escuela Politécnica Nacional

Científicos de instituciones de gran prestigio, como la Universidad de Edimburgo (Escocia), el Instituto Alfred Wegener de Bremen (Alemania), el consorcio EarthScope (Estados Unidos) y el Instituto Geofísico de la Escuela Politécnica Nacional (IG-EPN) unieron esfuerzos para el desarrollo de trabajos orientados a la mejora y optimización de varias estaciones de monitoreo sísmico y geodésico, ubicadas en puntos estratégicos de la caldera del volcán Sierra Negra, en Galápagos.

Mejoras y optimización de redes de vigilancia sísmica y geodésica en el volcán Sierra Negra
Figura 1. Estación de monitoreo geodésico y meteorológico GV10: reemplazo de paneles solares, baterías y sistema de control, instalación de sensor meteorológico y mejora del sistema de telecomunicaciones. Los datos de esta estación se envían a la repetidora principal en Volcán Chico y son retransmitidos a la Estación Científica Charles Darwin.


Mejoras y optimización de redes de vigilancia sísmica y geodésica en el volcán Sierra Negra
Figura 2. Instalación y configuración de equipos, como parte de las actividades de fortalecimiento y optimización en la estación geodésica GV10.


Mejoras y optimización de redes de vigilancia sísmica y geodésica en el volcán Sierra Negra
Figura 3. Mapa de las islas Fernandina e Isabela con sus volcanes (izquierda). Mapa del Sierra Negra (derecha) y su caldera con forma elipsoidal de casi 10 km en su eje mayor. Los puntos rojos corresponden a las bases de monitoreo GNSS.


El volcán Sierra Negra es uno de los más activos del Ecuador y del mundo. Sus frecuentes erupciones han moldeado paisajes impresionantes y representa un escenario natural de gran interés científico, siendo al mismo tiempo, un riesgo potencial para las comunidades y la biodiversidad local. Por eso, su estudio minucioso con el objetivo de entender mejor sus erupciones y el monitoreo continuo mediante redes sísmicas, geodésicas, técnicas satelitales, cámaras y sensores de gas es fundamental para detectar señales tempranas sobre cambios en su dinámica interna.

Mejoras y optimización de redes de vigilancia sísmica y geodésica en el volcán Sierra Negra
Figura 4. Estación GV10, un día despejado, con vista a la caldera del Sierra Negra y los relieves de escarpe generados por las fallas que la atraviesan.


Mejoras y optimización de redes de vigilancia sísmica y geodésica en el volcán Sierra Negra
Figura 5. Desarrollo de trabajos en las estaciones sísmicas SN14 (interior de la caldera) y SN17 (borde de la caldera, flanco suroeste).


Mejoras y optimización de redes de vigilancia sísmica y geodésica en el volcán Sierra Negra
Figura 6. Trabajos en la estación geodésica GV12. Traslado de equipos (imagen superior). Mejoras de los sistemas de la estación (imagen intermedia). Estación GV12 operativa, con un sistema de transmisión diaria de datos (imagen inferior).


Mejoras y optimización de redes de vigilancia sísmica y geodésica en el volcán Sierra Negra
Figura 7. Trayecto hacia la estación GV14 a través de terrenos de lavas solidificadas y ascenso por medio de enormes rocas.


Mejoras y optimización de redes de vigilancia sísmica y geodésica en el volcán Sierra Negra
Figura 8. Estación GNSS GV14 para el análisis de la deformación en la parte superior del escarpe de la falla al oeste de la caldera.


Mejoras y optimización de redes de vigilancia sísmica y geodésica en el volcán Sierra Negra
Figura 9. Antena GNSS de la estación GV14, dedicada a la detección de desplazamientos y de la deformación. Al fondo, se observa el borde de la caldera del Sierra Negra y sobre las nubes, aparece la cumbre del volcán Cerro Azul.


Mejoras y optimización de redes de vigilancia sísmica y geodésica en el volcán Sierra Negra
Figura 10. Mantenimiento de estación multiparamétrica VCH1 (flanco nororiental), que incluye sensores sísmicos, GPS y sistemas de transmisión de datos.


Mejoras y optimización de redes de vigilancia sísmica y geodésica en el volcán Sierra Negra
Figura 11. Optimización de la estación sísmica SN02 en medio de un terreno de lavas solidificadas.


Estas estaciones funcionan gracias a la dedicación y apoyo de instituciones internacionales y complementan la red de monitoreo del IG-EPN, fortaleciendo así la vigilancia en varios de los volcanes en Galápagos. Gracias a esta colaboración, científicos de todo el mundo estudian los procesos volcánicos y tectónicos que han edificado y dado forma a estas islas.

Mejoras y optimización de redes de vigilancia sísmica y geodésica en el volcán Sierra Negra
Figura 12. Sobrevuelo con dron para la obtención de imágenes que son aplicadas en el desarrollo de Modelos Digitales de Elevación (DEM).


De manera complementaria, se realizaron varias misiones de sobrevuelo con naves no tripuladas para adquirir imágenes de la superficie. El uso de drones permite generar modelos 3D de alta resolución, que facilitan la identificación de fallas, fracturas y flujos de lava, aportando información clave para la compresión de la dinámica del suelo.

 

Equipo de investigadores y colaboradores:

  • Andrew Bell (University of Edimburgh)
  • Anaís Vásconez (Instituto Geofísico EPN / University of Edimburgh)
  • Jim Normandeau, (EarthScope Consortium)
  • Luis Bonilla (Parque Nacional Galápagos)
  • Marco Yépez (Instituto Geofísico EPN)
  • Peter LaFemina (Alfred Wegener Institute, University of Bremen)
  • Stephen Hernández, (Instituto Geofísico EPN)
Mejoras y optimización de redes de vigilancia sísmica y geodésica en el volcán Sierra Negra
Figura 13. Participantes en la optimización de las redes de vigilancia sísmica y geodésica en el volcán Sierra Negra. Arriba: Stephen Hernández, Luis Bonilla, Anaís Vásconez, Andrew Bell. Abajo: Andrew Bell, Jim Normandeau, Peter LaFemina, Anaís Vásconez, Stephen Hernández, Marco Yépez.


 

El Instituto Geofísico de la Escuela Politécnica Nacional agradece de manera especial la colaboración del Parque Nacional Galápagos, cuya gestión hizo posible la realización de estas actividades.

 

M. Yépez
Instituto Geofísico
Escuela Politécnica Nacional

19 de septiembre de 2011

Sandra Carrasco

Con motivo de la conmemoración Vigésimo Sexta del sismo ocurrido el 19 de septiembre de 1985, el director general de Prevención de la Secretaría de Protección Civil, Óscar Roa Flores, aseguró que es necesario fomentar entre los capitalinos la implementación de un plan familiar de protección civil.

Informó que la dependencia capitalina trabajará para capacitar en la creación de dichos planes, en escuelas, empresas, hogares, establecimientos mercantiles y oficinas, para lograr una respuesta favorable en caso de contingencia.

EL UNIVERSAL DF te enlista 5 datos que a decir de Roa Flores, se deben tomar en cuenta para la creación del plan familiar de protección civil en caso de sismos.

1.      Tener una bolsa de vida, que contenga alimentos y agua embotellada.

2.      Tener a la mano medicamentos frecuentes en algún integrante de la familia.

3.      Alistar una lámpara y un silbato.

4.      Las barras energéticas son buena opción en caso de tener que esperar 72 horas, que son las que se marcan como tiempo de respuesta ante un rescate.

5.      Fotocopiar papeles importantes, para el caso de la pérdida de los originales.

6.      El plan familiar debe contemplar la forma en que se ubican los muebles en el hogar, para que faciliten la evacuación en caso necesario; evitar que se conviertan en trampas dentro de la casa en caso de siniestros.

7.      Establecer un punto de reunión para todos los familiares, después de una contingencia.

8.      Prever que los celulares no funcionarán y que habrá deficiencia en el transporte.

JBP

Fuente: http://www.eluniversaldf.mx/home/nota34167.html