

8th International Symposium on Andean Geodynamics (ISAG)

Interaction between volcanisms inland and the spreading center: example of Galápagos archipelago

W. Ben Mansour¹, G. Nolet², M. Ruiz³, J. C. Afonso^{1, 4}

¹Department of Earth and Planetary Sciences, Macquarie University, Sydney, Australia ²Université Côte d'Azur/CNRS/OCA/IRD, Géoazur, Sophia Antipolis, 06560, France ³Instituto Geofísico, Escuela Politécnica Nacional, 2759, Quito, Ecuador ⁴CEED, University of Oslo, Norway

The Galápagos archipelago, located west of Ecuador, is a good example where a mantle plume interacts with a spreading center and modifies physical and chemical properties of the oceanic lithosphere. The Galápagos Spreading Center (GSC) and the Galápagos hotspot interact over more than 1,000 km with unusual features for a hot spot region (large number of historical active volcanoes, large range of lavas composition, alignment of volcanic centers and seamounts). To bring new information on the physical and chemical properties of this region, we are constructing a new P-wave velocity model of this region by combining data from 10 seismic broadband stations and from 9 MERMAIDS (Mobile Earthquake Recorder in Marine Areas by Independent Divers) deployed in this region between 2014 and 2016. We focus on Pn head waves to better constraint the Moho depth in this region and image the interaction between the hot spot and the GSC. We selected 150 seismic events between May 2014 and September 2016, with epicentral distance between 3o and 35o and picked more than 2,500 Pn phases that we will invert in a probabilistic tomography inversion in a second step. In this presentation, we will show examples and statistics of Pn data. We will discuss the benefits and limitations of a thermochemical tomography in this region to get temperature and major-element composition of the lithosphere and sub-lithospheric upper mantle. These new results could bring important information and implication of the current models of hot spots and their interactions with oceanic lithosphere.